Water-Soluble Iron Porphyrins as Catalysts for Suppressing Chlorinated Disinfection Byproducts in Hypochlorite-Dependent Water Remediation.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-27 DOI:10.1002/cssc.202402171
Silène Engbers, Maja J Lind, Mathias L Skavenborg, Johannes E M N Klein, Frants R Lauritsen, Christine J McKenzie
{"title":"Water-Soluble Iron Porphyrins as Catalysts for Suppressing Chlorinated Disinfection Byproducts in Hypochlorite-Dependent Water Remediation.","authors":"Silène Engbers, Maja J Lind, Mathias L Skavenborg, Johannes E M N Klein, Frants R Lauritsen, Christine J McKenzie","doi":"10.1002/cssc.202402171","DOIUrl":null,"url":null,"abstract":"<p><p>We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost. One drawback is that it reacts with organic pollutants to generate toxic chlorinated byproducts. To mitigate chlorination in water remediation, we have investigated the use of catalytic amounts of charged water-soluble iron porphyrins. These are known to activate hypochlorite to generate high valent oxoiron species. We studied the depletion of the model micropollutant phenol and the accumulation of chlorinated disinfection byproducts under water remediation conditions, using iron porphyrins [(TMPyP)FeCl]Cl4 and (NH4)4[(TPPS)FeCl] as catalysts, by membrane inlet mass spectrometry. Despite bearing opposite charges on the meso-substituent, both iron porphyrins suppress the formation of chlorinated disinfection by-products equally well. To gain further insight, spectroscopic studies were performed. These showed the transient formation of Compound II, followed by either regeneration of the iron(III) porphyrin at low NaOCl concentrations, or total decomposition of the porphyrin complex at high NaOCl concentrations. Potential future directions for modifications of porphyrin-based catalysts are discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402171"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We are facing a world-wide shortage of clean drinking water which will only be further exacerbated by climate change. The development of reliable and affordable methods for water remediation is thus of utmost importance. Chlorine (which forms active hypochlorites in solution) is the most commonly used disinfectant due to its reliability and low cost. One drawback is that it reacts with organic pollutants to generate toxic chlorinated byproducts. To mitigate chlorination in water remediation, we have investigated the use of catalytic amounts of charged water-soluble iron porphyrins. These are known to activate hypochlorite to generate high valent oxoiron species. We studied the depletion of the model micropollutant phenol and the accumulation of chlorinated disinfection byproducts under water remediation conditions, using iron porphyrins [(TMPyP)FeCl]Cl4 and (NH4)4[(TPPS)FeCl] as catalysts, by membrane inlet mass spectrometry. Despite bearing opposite charges on the meso-substituent, both iron porphyrins suppress the formation of chlorinated disinfection by-products equally well. To gain further insight, spectroscopic studies were performed. These showed the transient formation of Compound II, followed by either regeneration of the iron(III) porphyrin at low NaOCl concentrations, or total decomposition of the porphyrin complex at high NaOCl concentrations. Potential future directions for modifications of porphyrin-based catalysts are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Effect of Carbon Nanotubes Conductors on Electrolyte Wettability and Electrochemical Performance of Lithium-Ion Battery Electrodes. Lignin Tandem Catalytic Transformation to Phenolic Aryl Acrylic Esters as Plant Growth Regulators. Scalable mechanochemical synthesis of biotin[6]uril. "ZnO-in-Carbon-Cage" Decorated Carbon Fibers as a Stable Lithium Host with Enhanced Kinetics for Lithium Metal Batteries. Advanced Alkali Metal Batteries based on MOFs and Their Composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1