Magnetic fluorinated mesoporous metal-organic frameworks for rapid derivatization-assisted GC–MS analysis of perfluoroalkyl carboxylic acids in harsh water environment
Huan Liu , Siyuan Di , Yunkang Liu , Zihan Li , Pin Chen , Shukui Zhu
{"title":"Magnetic fluorinated mesoporous metal-organic frameworks for rapid derivatization-assisted GC–MS analysis of perfluoroalkyl carboxylic acids in harsh water environment","authors":"Huan Liu , Siyuan Di , Yunkang Liu , Zihan Li , Pin Chen , Shukui Zhu","doi":"10.1016/j.chroma.2024.465612","DOIUrl":null,"url":null,"abstract":"<div><div>A novel magnetic mesoporous fluorinated metal-organic framework material (Fe<sub>3</sub>O<sub>4</sub>@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed Fe<sub>3</sub>O<sub>4</sub>@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs. Adsorption mechanisms encompass acid-base interactions, hydrophobic interactions, F-F interactions, electrostatic interactions, and size complementarity. Optimization of key parameters has significantly improved the extraction efficiency of MSPE. When coupled with gas chromatography-mass spectrometry (GC–MS), MSPE offers rapid and highly sensitive analysis of PFCAs. The method demonstrates wide linear range (0.050–50 ng mL<sup>−1</sup>), low detection limits (0.0010–0.0019 ng mL<sup>−1</sup>), good recoveries (86.7 % to 111 %), and exceptional intra- and inter-day precision. This approach accurately quantifies PFCAs in lake water and groundwater samples, enabling precise assessment of environmental contamination levels and supporting targeted remediation efforts.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1741 ","pages":"Article 465612"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324009853","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel magnetic mesoporous fluorinated metal-organic framework material (Fe3O4@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed Fe3O4@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs. Adsorption mechanisms encompass acid-base interactions, hydrophobic interactions, F-F interactions, electrostatic interactions, and size complementarity. Optimization of key parameters has significantly improved the extraction efficiency of MSPE. When coupled with gas chromatography-mass spectrometry (GC–MS), MSPE offers rapid and highly sensitive analysis of PFCAs. The method demonstrates wide linear range (0.050–50 ng mL−1), low detection limits (0.0010–0.0019 ng mL−1), good recoveries (86.7 % to 111 %), and exceptional intra- and inter-day precision. This approach accurately quantifies PFCAs in lake water and groundwater samples, enabling precise assessment of environmental contamination levels and supporting targeted remediation efforts.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.