Acute Leukemia Diagnosis Through AI-Enhanced Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Peripheral Blood Smears.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2024-12-26 DOI:10.1177/00037028241303526
Michael Lee, Charles Eryll Sy, Flordeluna Mesina, Priscilla Caguioa, Ma Rosario Irene Castillo, Ruth Bangaoil, Jeanny Punay, Mariella Cielo Cobarrubias, Rock Christian Tomas, Pia Marie Albano
{"title":"Acute Leukemia Diagnosis Through AI-Enhanced Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Peripheral Blood Smears.","authors":"Michael Lee, Charles Eryll Sy, Flordeluna Mesina, Priscilla Caguioa, Ma Rosario Irene Castillo, Ruth Bangaoil, Jeanny Punay, Mariella Cielo Cobarrubias, Rock Christian Tomas, Pia Marie Albano","doi":"10.1177/00037028241303526","DOIUrl":null,"url":null,"abstract":"<p><p>Acute leukemia, a highly perilous cancer, is diagnosed using invasive procedures like bone marrow aspirate and biopsy (BMA/BMB). This study investigated the use of artificial intelligence (AI)-enhanced Fourier transform infrared (FT-IR) spectroscopy as a non-invasive, reagent-free diagnostic alternative with high sensitivity and specificity. The spectral peak patterns of peripheral blood smears (PBS) from clinically healthy individuals (<i>n</i> = 50) BMA/BMB-confirmed acute leukemia patients (<i>n</i> = 50) were examined in the 1800-850 cm<sup>-1</sup> range. Six trained models were used to assess the diagnostic performance, focusing on accuracy, positive predictive value (PPV), negative predictive value (NPV), F<sub>1</sub> score, and area under the receiver operating characteristic (ROC) curve (AUC). The study shows significantly lower absorbance peaks in leukemia cases compared to healthy controls across various spectral regions: 1637.82, 1528.63, 1448.29, and 1388.54 cm<sup>-1</sup>, 1302.02, and 1240.21 cm<sup>-1</sup>, and 1163.99 cm<sup>-1</sup>. These differences indicate decreased concentrations or distinct molecular configurations of proteins, lipids, nucleic acids, and carbohydrates in cases. Conversely, they exhibited elevated absorbance peaks at 1032.14 and 894.11 cm<sup>-1</sup> regions, suggesting potential disparities in amino acid, DNA, fatty acid, and saccharide residues compared to healthy controls. Of the six trained models, the SVM model demonstrated remarkable diagnostic performance, achieving an accuracy of 83%, a PPV of 80%, an NPV of 86%, an F<sub>1</sub> score of 82.47%, and an AUC of 90.76%. This study demonstrates the potential of AI-enhanced FT-IR spectroscopy as a valuable adjunct diagnostic tool for acute leukemia. By offering a less invasive and faster alternative to BMA/BMB, this approach can potentially enhance leukemia diagnosis and improve patient outcomes, particularly in pediatric and geriatric cases.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241303526"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241303526","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Acute leukemia, a highly perilous cancer, is diagnosed using invasive procedures like bone marrow aspirate and biopsy (BMA/BMB). This study investigated the use of artificial intelligence (AI)-enhanced Fourier transform infrared (FT-IR) spectroscopy as a non-invasive, reagent-free diagnostic alternative with high sensitivity and specificity. The spectral peak patterns of peripheral blood smears (PBS) from clinically healthy individuals (n = 50) BMA/BMB-confirmed acute leukemia patients (n = 50) were examined in the 1800-850 cm-1 range. Six trained models were used to assess the diagnostic performance, focusing on accuracy, positive predictive value (PPV), negative predictive value (NPV), F1 score, and area under the receiver operating characteristic (ROC) curve (AUC). The study shows significantly lower absorbance peaks in leukemia cases compared to healthy controls across various spectral regions: 1637.82, 1528.63, 1448.29, and 1388.54 cm-1, 1302.02, and 1240.21 cm-1, and 1163.99 cm-1. These differences indicate decreased concentrations or distinct molecular configurations of proteins, lipids, nucleic acids, and carbohydrates in cases. Conversely, they exhibited elevated absorbance peaks at 1032.14 and 894.11 cm-1 regions, suggesting potential disparities in amino acid, DNA, fatty acid, and saccharide residues compared to healthy controls. Of the six trained models, the SVM model demonstrated remarkable diagnostic performance, achieving an accuracy of 83%, a PPV of 80%, an NPV of 86%, an F1 score of 82.47%, and an AUC of 90.76%. This study demonstrates the potential of AI-enhanced FT-IR spectroscopy as a valuable adjunct diagnostic tool for acute leukemia. By offering a less invasive and faster alternative to BMA/BMB, this approach can potentially enhance leukemia diagnosis and improve patient outcomes, particularly in pediatric and geriatric cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外周血涂片人工智能增强衰减全反射傅立叶变换红外光谱诊断急性白血病。
急性白血病是一种高度危险的癌症,通常通过骨髓抽吸和活检(BMA/BMB)等侵入性手术来诊断。本研究探讨了人工智能(AI)增强傅里叶变换红外(FT-IR)光谱作为一种无创、无试剂的诊断替代方法,具有高灵敏度和特异性。对临床健康人(n = 50)和BMA/ bmb确诊的急性白血病患者(n = 50)外周血涂片(PBS)在1800 ~ 850 cm-1范围内的谱峰模式进行了检测。使用6个训练好的模型来评估诊断性能,重点关注准确率、阳性预测值(PPV)、阴性预测值(NPV)、F1评分和受试者工作特征曲线下面积(AUC)。研究表明,白血病患者在1637.82、1528.63、1448.29和1388.54 cm-1、1302.02和1240.21 cm-1以及1163.99 cm-1等不同光谱区域的吸光度峰明显低于健康对照组。这些差异表明,在某些情况下,蛋白质、脂质、核酸和碳水化合物的浓度降低或分子构型不同。相反,它们在1032.14和894.11 cm-1区域的吸光度峰升高,表明与健康对照相比,氨基酸、DNA、脂肪酸和糖类残基可能存在差异。其中,SVM模型的诊断准确率为83%,PPV为80%,NPV为86%,F1得分为82.47%,AUC为90.76%。这项研究证明了人工智能增强的FT-IR光谱作为急性白血病有价值的辅助诊断工具的潜力。通过提供一种侵入性更小、速度更快的BMA/BMB替代方法,这种方法可以潜在地提高白血病的诊断并改善患者的预后,特别是在儿科和老年病例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Rapid-Scan Fourier Transform Infrared Difference Spectroscopy with Two-Dimensional Correlation Analysis to Show the Build-Up of Light-Adapted States in Bacterial Photosynthetic Reaction Centers. Local Adaptive Fusion Regression (LAFR) for Local Linear Multivariate Calibration: Application to Large Datasets. Confocal Raman Microscopy for Measuring In Situ Temperature-Dependent Structural Changes in Poly(Ethylene Oxide) Thin Films. Dual-Gas Sensor Employing Wavelength-Stabilized Tunable Diode Laser Absorption Spectroscopy and H-Infinity Filtering Algorithm. Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1