{"title":"One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films.","authors":"Sharon Hayne, Naftali Kanovsky, Shlomo Margel","doi":"10.3390/biomimetics9120756","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry. The mixture is then spread on polymeric films using a Mayer rod, which eliminates the need for expensive equipment or multistep processes. The incorporation of silica nanoparticles along with titanium precursor and TEOS results in the formation of a silica-titania network around the silica nanoparticles. This chemically binds them to the activated surface, forming a unique dual-scale surface morphology depending on the size of the silica nanoparticles used in the coating mixture. The coated films were shown to be superhydrophobic with a high water contact angle of over 180° and a rolling angle of 0°. This is due to the combination of dual-scale micro/nano roughness with fluorinated hydrocarbons that lowered the surface free energy. The coatings exhibited excellent chemical and mechanical durability, as well as UV-blocking capabilities. The results show that the coatings remain superhydrophobic even after a sandpaper abrasion test under a pressure of 2.5 kPa for a distance of 30 m.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672995/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120756","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry. The mixture is then spread on polymeric films using a Mayer rod, which eliminates the need for expensive equipment or multistep processes. The incorporation of silica nanoparticles along with titanium precursor and TEOS results in the formation of a silica-titania network around the silica nanoparticles. This chemically binds them to the activated surface, forming a unique dual-scale surface morphology depending on the size of the silica nanoparticles used in the coating mixture. The coated films were shown to be superhydrophobic with a high water contact angle of over 180° and a rolling angle of 0°. This is due to the combination of dual-scale micro/nano roughness with fluorinated hydrocarbons that lowered the surface free energy. The coatings exhibited excellent chemical and mechanical durability, as well as UV-blocking capabilities. The results show that the coatings remain superhydrophobic even after a sandpaper abrasion test under a pressure of 2.5 kPa for a distance of 30 m.