Mehwish Saeed, Saad Zafar, Zarreen Sajjad, Rizwan Aslam, Sultan Ali, Muhammad Shahid Mahmood, Mueed Aayan, Maria Sophy, Saqib Umer, Sajjad Ur Rahman, Muhammad Naveed Anwar
{"title":"The efficacy of egg albumin nanoparticles adjuvanted Clostridium perfringens type D toxoid vaccine in rabbits.","authors":"Mehwish Saeed, Saad Zafar, Zarreen Sajjad, Rizwan Aslam, Sultan Ali, Muhammad Shahid Mahmood, Mueed Aayan, Maria Sophy, Saqib Umer, Sajjad Ur Rahman, Muhammad Naveed Anwar","doi":"10.1007/s42770-024-01589-3","DOIUrl":null,"url":null,"abstract":"<p><p>Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens. Furthermore, egg albumin is a highly adaptable protein nanocarrier in vaccine delivery systems due to its biocompatible, biodegradable, non-toxic, and non-immune-modulating properties. In this study, we assessed the efficacy, safety, immunogenicity, and dose-effect relationships of the nanoparticle-advanced toxoid vaccine (G1) in contrast to the commercially available vaccine (ETV) (G2). Two different vaccines (1 ml) were inoculated in experimental animals (rabbits) on days 1, 7, 14, 21, and 28. The geometric mean titers (GMT) of Groups 2 and 3 were recorded on the respective day of inoculation. The findings reveal that the GMT of group 2 was significantly higher than group 3. The use of nanoparticles to detain toxins demonstrated enhanced immune protection against the harmful effects caused by the toxins. This work is anticipated to explore new opportunities in developing improved vaccinations using nanoparticles to combat the pathogenicity/ virulence factors that present potential risks to livestock.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01589-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens. Furthermore, egg albumin is a highly adaptable protein nanocarrier in vaccine delivery systems due to its biocompatible, biodegradable, non-toxic, and non-immune-modulating properties. In this study, we assessed the efficacy, safety, immunogenicity, and dose-effect relationships of the nanoparticle-advanced toxoid vaccine (G1) in contrast to the commercially available vaccine (ETV) (G2). Two different vaccines (1 ml) were inoculated in experimental animals (rabbits) on days 1, 7, 14, 21, and 28. The geometric mean titers (GMT) of Groups 2 and 3 were recorded on the respective day of inoculation. The findings reveal that the GMT of group 2 was significantly higher than group 3. The use of nanoparticles to detain toxins demonstrated enhanced immune protection against the harmful effects caused by the toxins. This work is anticipated to explore new opportunities in developing improved vaccinations using nanoparticles to combat the pathogenicity/ virulence factors that present potential risks to livestock.
期刊介绍:
The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology.
The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors.
The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.