Regulation and Function of CCL2 and N-Myc in Retinoic Acid-treated Neuroblastoma Cells.

IF 2.6 4区 医学 Q2 GENETICS & HEREDITY Cancer Genomics & Proteomics Pub Date : 2025-01-01 DOI:10.21873/cgp.20490
Nanke Murra, Nina Sophie Pommert, Berit Schmidt, Reema Sami Issa, Meike Kaehler, Henrike Bruckmueller, Vera Tim, Ingolf Cascorbi, Vicki Waetzig
{"title":"Regulation and Function of CCL2 and N-Myc in Retinoic Acid-treated Neuroblastoma Cells.","authors":"Nanke Murra, Nina Sophie Pommert, Berit Schmidt, Reema Sami Issa, Meike Kaehler, Henrike Bruckmueller, Vera Tim, Ingolf Cascorbi, Vicki Waetzig","doi":"10.21873/cgp.20490","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.</p><p><strong>Materials and methods: </strong>In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots.</p><p><strong>Results: </strong>In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus.</p><p><strong>Conclusion: </strong>CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"22 1","pages":"90-102"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20490","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.

Materials and methods: In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots.

Results: In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus.

Conclusion: CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Genomics & Proteomics
Cancer Genomics & Proteomics ONCOLOGY-GENETICS & HEREDITY
CiteScore
5.00
自引率
8.00%
发文量
51
期刊介绍: Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004. Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal. Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.
期刊最新文献
FAM32A Suppression Decreases 5-Fluorouracil-induced Apoptosis and Is Associated With Poor Prognosis in Gastric Cancer. KRAS Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and KRAS G12/G13 Detection in Cell-Free DNA. Complex Genetic Evolution and Treatment Challenges in Myeloid Neoplasms: A Case of Persistent t(2;3)(p15~23;q26)/MECOM Rearrangement, SF3B1 Mutation, and Transient TNIP1::PDGFRB Chimera. Contribution of Cyclin Dependent Kinase Inhibitor 1A Genotypes to Childhood Acute Lymphocytic Leukemia Risk in Taiwan. Evaluation of HMGB1 Expression as a Clinical Biomarker for Cholangiocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1