C Lapoujade, M Blanco, M Givelet, A S Gille, I Allemand, L Lenez, N Thiounn, S Roux, J P Wolf, C Patrat, L Riou, V Barraud-Lange, P Fouchet
{"title":"Characterisation and hierarchy of the spermatogonial stem cell compartment in human spermatogenesis by spectral cytometry using a 16-colors panel.","authors":"C Lapoujade, M Blanco, M Givelet, A S Gille, I Allemand, L Lenez, N Thiounn, S Roux, J P Wolf, C Patrat, L Riou, V Barraud-Lange, P Fouchet","doi":"10.1007/s00018-024-05496-6","DOIUrl":null,"url":null,"abstract":"<p><p>About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells. This 16-C panel of markers allowed the identification of a primitive SSCs state with the β2M<sup>-</sup>CD51/61<sup>-</sup>ITGA6<sup>+</sup>SSEA4<sup>+</sup>TSPAN33<sup>+</sup>THY1<sup>+</sup>CD9<sup>med</sup>EPCAM<sup>med</sup>CD155<sup>+</sup>CD148<sup>+</sup>CD47<sup>high</sup>CD7<sup>high</sup> phenotype, with a profile close to the most primitive SSCs states 0 and SSC1-B previously defined by sc-RNAseq approach. The hierarchy of events in the spermatogonial stem cell and progenitor compartment of human spermatogenesis can be delineated. This highlights the importance of a multi-parametric and spectral cytometry approach. The in-depth characterisation of testicular cells should help to overcome the lack of stem cell knowledge, that hinders the understanding of the regenerative potential of SSCs, and is a critical parameter for the successful development of new SSCs-based cell therapies.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"15"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05496-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells. This 16-C panel of markers allowed the identification of a primitive SSCs state with the β2M-CD51/61-ITGA6+SSEA4+TSPAN33+THY1+CD9medEPCAMmedCD155+CD148+CD47highCD7high phenotype, with a profile close to the most primitive SSCs states 0 and SSC1-B previously defined by sc-RNAseq approach. The hierarchy of events in the spermatogonial stem cell and progenitor compartment of human spermatogenesis can be delineated. This highlights the importance of a multi-parametric and spectral cytometry approach. The in-depth characterisation of testicular cells should help to overcome the lack of stem cell knowledge, that hinders the understanding of the regenerative potential of SSCs, and is a critical parameter for the successful development of new SSCs-based cell therapies.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered