Next Generation Phenotyping and Synthetic Faces in Coffin Siris Syndrome.

IF 2.9 3区 医学 Q2 GENETICS & HEREDITY Clinical Genetics Pub Date : 2024-12-26 DOI:10.1111/cge.14682
Quentin Hennocq, Olivier Lienhard, Dipesh Rao, Jeanne Amiel, Ludovic Benichou, Thomas Bongibault, Ana-Julia Bravo Hidalgo, Valérie Cormier-Daire, Stanislas Lyonnet, Arnaud Picard, Marlène Rio, Ahmed Zaiter, Nicolas Garcelon, Tinatin Tkemaladze, Roman H Khonsari
{"title":"Next Generation Phenotyping and Synthetic Faces in Coffin Siris Syndrome.","authors":"Quentin Hennocq, Olivier Lienhard, Dipesh Rao, Jeanne Amiel, Ludovic Benichou, Thomas Bongibault, Ana-Julia Bravo Hidalgo, Valérie Cormier-Daire, Stanislas Lyonnet, Arnaud Picard, Marlène Rio, Ahmed Zaiter, Nicolas Garcelon, Tinatin Tkemaladze, Roman H Khonsari","doi":"10.1111/cge.14682","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic wandering and delayed management are major issues in rare diseases. Here, we report a new Next-Generation Phenotyping (NGP) model for diagnosing Coffin Siris syndrome (CSS) on clinical photographs among controls and distinguish the different genotypes. This retrospective and prospective study, conducted from 1998 to 2023, included frontal and lateral pictures of confirmed CSS. After automatic placement of landmarks, geometric features extraction using procrustes superimposition, and textural features using a gray-level co-occurrence matrix (GLCM), we incorporated age, gender, and ethnicity and used XGboost (eXtreme Gradient Boosting) for classification. An independent validation set of confirmed CSS cases from centers in Bangalore (India) and Tbilissi (Georgia) was used. We then tested for differences between genotype groups. Finally, we introduced a new approach for generating synthetic faces of children with CSS. The training set included over 196 photographs from our center, corresponding to 58 patients (29 controls, 29 CSS). We distinguished CSS from controls in the independent validation group with an accuracy of 90.0% (73.5%-97.9%, p = 0.001). We found no facial shape difference between the different genotypes.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cge.14682","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnostic wandering and delayed management are major issues in rare diseases. Here, we report a new Next-Generation Phenotyping (NGP) model for diagnosing Coffin Siris syndrome (CSS) on clinical photographs among controls and distinguish the different genotypes. This retrospective and prospective study, conducted from 1998 to 2023, included frontal and lateral pictures of confirmed CSS. After automatic placement of landmarks, geometric features extraction using procrustes superimposition, and textural features using a gray-level co-occurrence matrix (GLCM), we incorporated age, gender, and ethnicity and used XGboost (eXtreme Gradient Boosting) for classification. An independent validation set of confirmed CSS cases from centers in Bangalore (India) and Tbilissi (Georgia) was used. We then tested for differences between genotype groups. Finally, we introduced a new approach for generating synthetic faces of children with CSS. The training set included over 196 photographs from our center, corresponding to 58 patients (29 controls, 29 CSS). We distinguished CSS from controls in the independent validation group with an accuracy of 90.0% (73.5%-97.9%, p = 0.001). We found no facial shape difference between the different genotypes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coffin Siris综合征的下一代表型和合成面孔。
诊断偏差和延迟治疗是罕见病的主要问题。在这里,我们报告了一种新的下一代表型(NGP)模型,用于诊断Coffin Siris综合征(CSS)的临床照片,并区分不同的基因型。这项回顾性和前瞻性研究于1998年至2023年进行,包括确认的CSS的正面和侧面照片。在自动放置地标、使用procruges叠加提取几何特征和使用灰度共生矩阵(GLCM)提取纹理特征之后,我们将年龄、性别和种族纳入其中,并使用XGboost (eXtreme Gradient Boosting)进行分类。使用来自班加罗尔(印度)和第比利斯(格鲁吉亚)中心的确诊CSS病例的独立验证集。然后我们测试了基因型组之间的差异。最后,我们介绍了一种用CSS生成儿童合成面孔的新方法。训练集包括来自我们中心的196多张照片,对应于58名患者(29名对照组,29名CSS)。在独立验证组中,我们将CSS与对照组区分开来,准确率为90.0% (73.5%-97.9%,p = 0.001)。我们发现不同基因型之间面部形状没有差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Genetics
Clinical Genetics 医学-遗传学
CiteScore
6.50
自引率
0.00%
发文量
175
审稿时长
3-8 weeks
期刊介绍: Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice. Topics of particular interest are: • Linking genetic variations to disease • Genome rearrangements and disease • Epigenetics and disease • The translation of genotype to phenotype • Genetics of complex disease • Management/intervention of genetic diseases • Novel therapies for genetic diseases • Developmental biology, as it relates to clinical genetics • Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease
期刊最新文献
A Novel Homozygous Missense ZP1 Variant Result in Human Female Empty Follicle Syndrome. A Strong Candidate Gene for Nonsyndromic Intellectual Disability Phenotype: SGSM3. Chromosome 8p Syndromes Clinical Presentation and Management Guidelines. A Frameshift Variant in ANKRD24 Implicates Its Role in Human Non-Syndromic Hearing Loss. A Novel PTPRQ c.3697del Variant Causes Autosomal Dominant Progressive Hearing Loss in Both Humans and Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1