Grace Keane, Rob van Rooij, Marnix Lam, Arthur Braat, Maarten Smits, Hugo de Jong
{"title":"An Evaluation of 90Y Bremsstrahlung SPECT Image Quality in the Presence of 99mTc: A Technical Perspective on Same-Day Radioembolization.","authors":"Grace Keane, Rob van Rooij, Marnix Lam, Arthur Braat, Maarten Smits, Hugo de Jong","doi":"10.3390/curroncol31120554","DOIUrl":null,"url":null,"abstract":"<p><p>In same-day radioembolization, 99mTc-MAA SPECT/CT, 90Y radioembolization, and post-treatment 90Y SPECT/CT procedures are conducted on the same-day, resulting in a dual-isotope environment of 90Y and 99mTc during post-treatment imaging. This study aimed to quantify the impact of 99mTc on 90Y bremsstrahlung-SPECT/CT image quality and to establish an optimised imaging protocol for both clinical practice, and with advanced reconstruction techniques. Utilising a NEMA IQ phantom, contrast recovery coefficients (CRCs) were measured to evaluate the 90Y image quality degradation caused by 99mTc. SPECT/CT scans of 90Y-only and 90Y with varying amounts of 99mTc were conducted using a standard protocol (90-120 keV energy window, high-energy collimator) and various dual-isotope protocols. The standard protocol resulted in a marked CRC reduction, with the largest sphere's CRC decreasing from 0.21 (90Y-only) to 0.05 when 99mTc activity was 5% of 90Y. For an optimised protocol (160-200 keV energy window, high-energy collimator) CRC values were 0.16 for 90Y-only and 0.15 for 90Y+99mTc. The highest CRC values were achieved with an advanced Monte Carlo-based reconstruction, showing 0.58 for 90Y-only and 0.46 for 90Y+99mTc. Image quality degradation was noted in dual-isotope settings even when using an optimised protocol. Advanced reconstruction techniques markedly improved post-treatment image quality.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"31 12","pages":"7511-7522"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol31120554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In same-day radioembolization, 99mTc-MAA SPECT/CT, 90Y radioembolization, and post-treatment 90Y SPECT/CT procedures are conducted on the same-day, resulting in a dual-isotope environment of 90Y and 99mTc during post-treatment imaging. This study aimed to quantify the impact of 99mTc on 90Y bremsstrahlung-SPECT/CT image quality and to establish an optimised imaging protocol for both clinical practice, and with advanced reconstruction techniques. Utilising a NEMA IQ phantom, contrast recovery coefficients (CRCs) were measured to evaluate the 90Y image quality degradation caused by 99mTc. SPECT/CT scans of 90Y-only and 90Y with varying amounts of 99mTc were conducted using a standard protocol (90-120 keV energy window, high-energy collimator) and various dual-isotope protocols. The standard protocol resulted in a marked CRC reduction, with the largest sphere's CRC decreasing from 0.21 (90Y-only) to 0.05 when 99mTc activity was 5% of 90Y. For an optimised protocol (160-200 keV energy window, high-energy collimator) CRC values were 0.16 for 90Y-only and 0.15 for 90Y+99mTc. The highest CRC values were achieved with an advanced Monte Carlo-based reconstruction, showing 0.58 for 90Y-only and 0.46 for 90Y+99mTc. Image quality degradation was noted in dual-isotope settings even when using an optimised protocol. Advanced reconstruction techniques markedly improved post-treatment image quality.
期刊介绍:
Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease.
We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.