Xue Zhang, Yuhan Zhang, Yang Shi, Dou Shi, Min Niu, Xue Liu, Xing Liu, Zhiwei Yang, Xianxian Wu
{"title":"Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway.","authors":"Xue Zhang, Yuhan Zhang, Yang Shi, Dou Shi, Min Niu, Xue Liu, Xing Liu, Zhiwei Yang, Xianxian Wu","doi":"10.4093/dmj.2023.0397","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.</p><p><strong>Methods: </strong>Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.</p><p><strong>Results: </strong>CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD. <italic>In vitro</italic> experiments using HK-2 cells revealed an upregulation of glucose transporters after incubation with high glucose, a response that was significantly attenuated following gastrin intervention. The glucose uptake from the culture medium of cells was altered accordingly. Moreover, gastrin administration effectively mitigated hyperglycemia in WT diabetic mice by inhibition of SGLT2 mediated glucose reabsorption, but this effect was compromised in the absence of CCKBR, as seen in CckbrCKO mice. Mechanistically, gastrin/CCKBR substantially reduced SGLT2 expression in HK-2 cells exposed to high glucose, via modulating Erk/nuclear factor-kappa B (NF-κB) pathway.</p><p><strong>Conclusion: </strong>Our study underscores the crucial role of renal gastrin/CCKBR in SGLT2 regulation and glucose reabsorption, and renal gastrin/CCKBR can be a promising therapeutic target for diabetes.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2023.0397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods: Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results: CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD. In vitro experiments using HK-2 cells revealed an upregulation of glucose transporters after incubation with high glucose, a response that was significantly attenuated following gastrin intervention. The glucose uptake from the culture medium of cells was altered accordingly. Moreover, gastrin administration effectively mitigated hyperglycemia in WT diabetic mice by inhibition of SGLT2 mediated glucose reabsorption, but this effect was compromised in the absence of CCKBR, as seen in CckbrCKO mice. Mechanistically, gastrin/CCKBR substantially reduced SGLT2 expression in HK-2 cells exposed to high glucose, via modulating Erk/nuclear factor-kappa B (NF-κB) pathway.
Conclusion: Our study underscores the crucial role of renal gastrin/CCKBR in SGLT2 regulation and glucose reabsorption, and renal gastrin/CCKBR can be a promising therapeutic target for diabetes.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.