Teodora Tasevska , Ivana Adamov , Nikola Geskovski , Svetlana Ibrić , Katerina Goracinova , Maja Simonoska Crcarevska
{"title":"3D printed extended-release hydrochlorothiazide tablets","authors":"Teodora Tasevska , Ivana Adamov , Nikola Geskovski , Svetlana Ibrić , Katerina Goracinova , Maja Simonoska Crcarevska","doi":"10.1016/j.ejps.2024.106998","DOIUrl":null,"url":null,"abstract":"<div><div>In this study 3D printed tablets (printlets) with extended release of hydrochlorothiazide (HHT) as model active ingredient were designed and developed. Four formulations, F0.1<sub>SSE</sub>, F1<sub>SSE</sub>, F0.1<sub>DLP</sub> and F1<sub>DLP</sub>, have been manufactured and characterized, using non-typical semi-solid extrusion (SSE) with UV light solidification and digital light processing (DLP) techniques. Obtained rheological studies pointed out to F1<sub>SSE</sub> and F1<sub>DLP</sub> as more suitable for SSE and DLP printing, respectively. Photopolymerization process between photopolymer (PEGDA) and photoinitiator (DPPO; 0.1% and 1%) was investigated using FTIR, with PCA modeling utilized to analyze spectral variations over time and estimate crosslinking kinetics. SSE printlets averaged ∼6.5 mm in diameter, ∼3 mm in height and ∼110 mg in mass, while DLP printlets averaged ∼8.5 mm in diameter, ∼2.5 mm in height, with masses of ∼170 mg (F0.1<sub>DLP</sub>) and ∼220 mg (F1<sub>DLP</sub>). All four formulations complied to the requirements of European pharmacopeia for uniformity of dosage units of single dose preparations. In vitro release studies indicated extended-release profiles in both 0.1M Hydrochloric acid (HCl) and phosphate buffer pH 6.8 for SSE and DLP printlets. The release kinetics of HHT from the printlets were modeled to fit First order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell equations and the most probable ones were determined based on the R<sup>2</sup> values and Akaike information criterion. FTIR and Raman spectroscopic analyses of printlets confirmed the presence of characteristic peaks from both, HHT and excipients, as well as modifications in bonds due to the photopolymeric reaction.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"206 ","pages":"Article 106998"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724003117","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study 3D printed tablets (printlets) with extended release of hydrochlorothiazide (HHT) as model active ingredient were designed and developed. Four formulations, F0.1SSE, F1SSE, F0.1DLP and F1DLP, have been manufactured and characterized, using non-typical semi-solid extrusion (SSE) with UV light solidification and digital light processing (DLP) techniques. Obtained rheological studies pointed out to F1SSE and F1DLP as more suitable for SSE and DLP printing, respectively. Photopolymerization process between photopolymer (PEGDA) and photoinitiator (DPPO; 0.1% and 1%) was investigated using FTIR, with PCA modeling utilized to analyze spectral variations over time and estimate crosslinking kinetics. SSE printlets averaged ∼6.5 mm in diameter, ∼3 mm in height and ∼110 mg in mass, while DLP printlets averaged ∼8.5 mm in diameter, ∼2.5 mm in height, with masses of ∼170 mg (F0.1DLP) and ∼220 mg (F1DLP). All four formulations complied to the requirements of European pharmacopeia for uniformity of dosage units of single dose preparations. In vitro release studies indicated extended-release profiles in both 0.1M Hydrochloric acid (HCl) and phosphate buffer pH 6.8 for SSE and DLP printlets. The release kinetics of HHT from the printlets were modeled to fit First order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell equations and the most probable ones were determined based on the R2 values and Akaike information criterion. FTIR and Raman spectroscopic analyses of printlets confirmed the presence of characteristic peaks from both, HHT and excipients, as well as modifications in bonds due to the photopolymeric reaction.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.