A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2024-12-27 DOI:10.1093/hmg/ddae188
Dandan Li, Yu Tian, Barbara Vona, Xin Yu, Junyan Lin, Lan Ma, Shu Lou, Xiaofeng Li, Guirong Zhu, Yuting Wang, Mulong Du, Lin Wang, Yongchu Pan
{"title":"A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration.","authors":"Dandan Li, Yu Tian, Barbara Vona, Xin Yu, Junyan Lin, Lan Ma, Shu Lou, Xiaofeng Li, Guirong Zhu, Yuting Wang, Mulong Du, Lin Wang, Yongchu Pan","doi":"10.1093/hmg/ddae188","DOIUrl":null,"url":null,"abstract":"<p><p>The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases. Applying Chromatin Immunoprecipitation (ChIP), Electrophoretic mobility shift and super-shift assays, we found that the mutant G allele recruited more STAT1 and STAT3, and increased the expression of TAF11. RNA sequencing, GO and KEGG pathway enrichment, ChIP and dual-luciferase reporter assays revealed that TAF11 downregulated CDH1 and CTNND1 in the cell adhesion pathway by binding to their promoter regions and inhibiting transcriptional activities. Alcian blue staining, time-lapse photography, whole-mount in situ hybridization, phospho-Histone H3 immunofluorescence and TUNEL assays indicated that TAF11 and taf11 overexpression (TAF11OE and taf11OE, respectively) contributed to disturbed migration of cranial neural crest cells and abnormal craniofacial development, as well as increased death and deformity rates in zebrafish. In conclusion, a functionally relevant TAF11 variant, affecting cell migration via modulating CDH1 and CTNND1, was associated with etiology of NSCLO.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae188","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases. Applying Chromatin Immunoprecipitation (ChIP), Electrophoretic mobility shift and super-shift assays, we found that the mutant G allele recruited more STAT1 and STAT3, and increased the expression of TAF11. RNA sequencing, GO and KEGG pathway enrichment, ChIP and dual-luciferase reporter assays revealed that TAF11 downregulated CDH1 and CTNND1 in the cell adhesion pathway by binding to their promoter regions and inhibiting transcriptional activities. Alcian blue staining, time-lapse photography, whole-mount in situ hybridization, phospho-Histone H3 immunofluorescence and TUNEL assays indicated that TAF11 and taf11 overexpression (TAF11OE and taf11OE, respectively) contributed to disturbed migration of cranial neural crest cells and abnormal craniofacial development, as well as increased death and deformity rates in zebrafish. In conclusion, a functionally relevant TAF11 variant, affecting cell migration via modulating CDH1 and CTNND1, was associated with etiology of NSCLO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Dissecting the shared genetic architecture between nonalcoholic fatty liver disease and type 2 diabetes. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1