Rhaponticin Alleviates Collagen-induced Arthritis by Inhibiting NLRP3/GSDMD-mediated Neutrophil Extracellular Traps.

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-12-27 DOI:10.1007/s10753-024-02228-7
Jingjing Zhang, Xinyue Xie, Qinhao Shen, Chenchen Yuan, Guotao Lu, Weiming Xiao, Weijuan Gong, Xiaoyan Fu, Xuebing Feng
{"title":"Rhaponticin Alleviates Collagen-induced Arthritis by Inhibiting NLRP3/GSDMD-mediated Neutrophil Extracellular Traps.","authors":"Jingjing Zhang, Xinyue Xie, Qinhao Shen, Chenchen Yuan, Guotao Lu, Weiming Xiao, Weijuan Gong, Xiaoyan Fu, Xuebing Feng","doi":"10.1007/s10753-024-02228-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophil extracellular traps (NETs) play an important role in the inflammatory response and progressive joint destruction in rheumatoid arthritis (RA). Rhaponticin (Rha) is a stilbene glycoside compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the therapeutic potential of Rha in RA, with a specific focus on its effects on NETs and on the underlying mechanisms of Rha. NETs formation induced by phorbol 12-myristate 13-acetate (PMA) and a collagen-induced arthritis (CIA) mouse model were implemented to evaluate the pharmacological effects of Rha in vitro and in vivo. The potential mechanism of Rha in improving RA was screened and verified using the SuperPred and DisGeNET databases. Disulfiram (a GSDMD inhibitor) and S100a8<sup>cre</sup> GSDMD<sup>fl/fl</sup> mice were used to confirm whether GSDMD is key to the role of Rha. The findings demonstrate that Rha significantly inhibited reactive oxygen species and NETs production in PMA-activated neutrophils. In vivo, Rha treatment significantly relieved joint symptoms in CIA mice and NETs production. Mechanistically, Rha reduced NETs production via inhibition of NLRP3/GSDMD activation. Neutrophil-specific GSDMD depletion eliminated the effects of Rha on NETs production in vitro. Disulfiram eliminated the effects of Rha on the inhibition of NETs production and alleviated joint inflammation in mice in vivo and in vitro. Overall, our results indicated that Rha exerts a protective effect against CIA by inhibiting NETs production through the NLRP3/GSDMD pathway. The results of this study provide new strategies for treating RA.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02228-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophil extracellular traps (NETs) play an important role in the inflammatory response and progressive joint destruction in rheumatoid arthritis (RA). Rhaponticin (Rha) is a stilbene glycoside compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the therapeutic potential of Rha in RA, with a specific focus on its effects on NETs and on the underlying mechanisms of Rha. NETs formation induced by phorbol 12-myristate 13-acetate (PMA) and a collagen-induced arthritis (CIA) mouse model were implemented to evaluate the pharmacological effects of Rha in vitro and in vivo. The potential mechanism of Rha in improving RA was screened and verified using the SuperPred and DisGeNET databases. Disulfiram (a GSDMD inhibitor) and S100a8cre GSDMDfl/fl mice were used to confirm whether GSDMD is key to the role of Rha. The findings demonstrate that Rha significantly inhibited reactive oxygen species and NETs production in PMA-activated neutrophils. In vivo, Rha treatment significantly relieved joint symptoms in CIA mice and NETs production. Mechanistically, Rha reduced NETs production via inhibition of NLRP3/GSDMD activation. Neutrophil-specific GSDMD depletion eliminated the effects of Rha on NETs production in vitro. Disulfiram eliminated the effects of Rha on the inhibition of NETs production and alleviated joint inflammation in mice in vivo and in vitro. Overall, our results indicated that Rha exerts a protective effect against CIA by inhibiting NETs production through the NLRP3/GSDMD pathway. The results of this study provide new strategies for treating RA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rhaponticin通过抑制NLRP3/ gsdmd介导的中性粒细胞胞外陷阱缓解胶原诱导的关节炎。
中性粒细胞胞外陷阱(NETs)在类风湿关节炎(RA)的炎症反应和进行性关节破坏中起重要作用。Rhaponticin (Rha)是一种具有抗氧化和抗炎作用的二苯乙烯苷类化合物。本研究旨在探讨Rha在RA中的治疗潜力,特别关注其对NETs的影响以及Rha的潜在机制。采用12-肉豆蔻酸13-乙酸佛波酯(PMA)诱导NETs形成和胶原性关节炎(CIA)小鼠模型,评价Rha的体内外药理作用。利用SuperPred和DisGeNET数据库筛选并验证了Rha改善RA的潜在机制。用双硫仑(一种GSDMD抑制剂)和S100a8cre GSDMDfl/fl小鼠来证实GSDMD是否是Rha作用的关键。研究结果表明,Rha显著抑制pma活化的中性粒细胞的活性氧和NETs的产生。在体内,Rha治疗显著缓解了CIA小鼠的关节症状和NETs的产生。从机制上讲,Rha通过抑制NLRP3/GSDMD激活来减少NETs的产生。中性粒细胞特异性GSDMD耗竭消除了Rha对体外NETs产生的影响。双硫仑在体内和体外均能消除Rha对NETs产生的抑制作用,减轻小鼠关节炎症。总的来说,我们的研究结果表明,Rha通过NLRP3/GSDMD途径抑制NETs的产生,从而对CIA产生保护作用。本研究结果为RA的治疗提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
DAPI
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1