Jonas Stroeder, Malte Multusch, Lennart Berkel, Lasse Hansen, Axel Saalbach, Heinrich Schulz, Mattias P Heinrich, Yannic Elser, Jörg Barkhausen, Malte Maria Sieren
{"title":"Optimizing Catheter Verification: An Understandable AI Model for Efficient Assessment of Central Venous Catheter Placement in Chest Radiography.","authors":"Jonas Stroeder, Malte Multusch, Lennart Berkel, Lasse Hansen, Axel Saalbach, Heinrich Schulz, Mattias P Heinrich, Yannic Elser, Jörg Barkhausen, Malte Maria Sieren","doi":"10.1097/RLI.0000000000001126","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.</p><p><strong>Materials and methods: </strong>The study utilized 2 datasets: the publicly accessible RANZCR CLiP dataset and a bespoke in-house dataset of 1006 annotated supine chest x-rays. Three deep learning models were trained: a classification network, a segmentation network, and a combination of both. These models were evaluated using receiver operating characteristic analysis, area under the curve, DICE similarity coefficient, and Hausdorff distance.</p><p><strong>Results: </strong>The combined model demonstrated superior performance with an area under the curve of 0.99 for correctly positioned CVCs and 0.95 for misplacements. The model maintained high efficacy even with reduced training data from the local dataset. Sensitivity and specificity rates were high, and the model effectively managed the segmentation and classification tasks, even in images with multiple CVCs and other support materials.</p><p><strong>Conclusions: </strong>This study illustrates the potential of AI-based models in accurately and reliably determining CVC placement in chest x-rays. The proposed method shows high accuracy and offers improved interpretability, important for clinical decision-making. The findings also highlight the importance of dataset quality and diversity in training AI models for medical image analysis.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001126","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.
Materials and methods: The study utilized 2 datasets: the publicly accessible RANZCR CLiP dataset and a bespoke in-house dataset of 1006 annotated supine chest x-rays. Three deep learning models were trained: a classification network, a segmentation network, and a combination of both. These models were evaluated using receiver operating characteristic analysis, area under the curve, DICE similarity coefficient, and Hausdorff distance.
Results: The combined model demonstrated superior performance with an area under the curve of 0.99 for correctly positioned CVCs and 0.95 for misplacements. The model maintained high efficacy even with reduced training data from the local dataset. Sensitivity and specificity rates were high, and the model effectively managed the segmentation and classification tasks, even in images with multiple CVCs and other support materials.
Conclusions: This study illustrates the potential of AI-based models in accurately and reliably determining CVC placement in chest x-rays. The proposed method shows high accuracy and offers improved interpretability, important for clinical decision-making. The findings also highlight the importance of dataset quality and diversity in training AI models for medical image analysis.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.