Chengyu Zhu, Xin Li, Yan Gao, Xueying Yang, Yuliang Gao, Kuihua Li
{"title":"Potential of <i>Streptomyces rochei</i> G-6 for Biocontrol of Cucumber Wilt Disease and Growth Enhancement.","authors":"Chengyu Zhu, Xin Li, Yan Gao, Xueying Yang, Yuliang Gao, Kuihua Li","doi":"10.3390/jof10120885","DOIUrl":null,"url":null,"abstract":"<p><p>Cucumber wilt disease, caused by <i>Fusarium oxysporum</i> f. sp. <i>cucumerinum</i> (FOC), is a major threat to cucumber production, especially in greenhouses. This study used a fermentation product derived from a new strain of <i>Streptomyces rochei</i> (G-6) to investigate the potential for biocontrol of cucumber wilt disease and the effect on promoting cucumber growth. In the first experiment, the inhibitory effect of <i>S. rochei</i> G-6 fermentation product (SGFP) on FOC growth was evaluated, then the effect of SGFP on wilt incidence and severity, as well as cucumber growth, antioxidant system, and soil nutrient conversion capacity were investigated. The results showed that SGFP inhibited FOC growth by 85.3% in the antimicrobial experiment. In the potting experiment, the incidence rate in the FOC group reached 88.7%, but it was only 56.0% in the SGFP1 group and 64.7% in the SGFP2 group, indicating the efficient inhibitory effect of SGFP on cucumber wilt, with the biocontrol effect of SGFP1 being higher than that of SGFP2. In addition, the disease index decreased significantly (<i>p</i> < 0.05) in both SGFP treatments, which was significantly (<i>p</i> < 0.05) lower in the SGFP1 group than in the SGFP2 group, indicating that pre-treatment was better than post-treatment in reducing the disease severity. In addition, SGFP promoted the growth of cucumber seedlings, as indicated by indicators related to the growth of aboveground and underground parts. Furthermore, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the cucumber seedlings increased after SGFP treatment and the malondialdehyde level was decreased, indicating a reduction in oxidative stress. SGFP also improved the soil nutrient conversion capacity by increasing the activities of urease, phosphatase, and sucrase, which may enhance nutrient uptake by cucumber seedling. The findings of this study suggest that SGFP is an effective biocontrol agent against cucumber wilt and also promotes cucumber growth by regulating the antioxidant system and soil environment, and its application is a promising solution to reduce wilt incidence in cucumber production.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"10 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10120885","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cucumber wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), is a major threat to cucumber production, especially in greenhouses. This study used a fermentation product derived from a new strain of Streptomyces rochei (G-6) to investigate the potential for biocontrol of cucumber wilt disease and the effect on promoting cucumber growth. In the first experiment, the inhibitory effect of S. rochei G-6 fermentation product (SGFP) on FOC growth was evaluated, then the effect of SGFP on wilt incidence and severity, as well as cucumber growth, antioxidant system, and soil nutrient conversion capacity were investigated. The results showed that SGFP inhibited FOC growth by 85.3% in the antimicrobial experiment. In the potting experiment, the incidence rate in the FOC group reached 88.7%, but it was only 56.0% in the SGFP1 group and 64.7% in the SGFP2 group, indicating the efficient inhibitory effect of SGFP on cucumber wilt, with the biocontrol effect of SGFP1 being higher than that of SGFP2. In addition, the disease index decreased significantly (p < 0.05) in both SGFP treatments, which was significantly (p < 0.05) lower in the SGFP1 group than in the SGFP2 group, indicating that pre-treatment was better than post-treatment in reducing the disease severity. In addition, SGFP promoted the growth of cucumber seedlings, as indicated by indicators related to the growth of aboveground and underground parts. Furthermore, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the cucumber seedlings increased after SGFP treatment and the malondialdehyde level was decreased, indicating a reduction in oxidative stress. SGFP also improved the soil nutrient conversion capacity by increasing the activities of urease, phosphatase, and sucrase, which may enhance nutrient uptake by cucumber seedling. The findings of this study suggest that SGFP is an effective biocontrol agent against cucumber wilt and also promotes cucumber growth by regulating the antioxidant system and soil environment, and its application is a promising solution to reduce wilt incidence in cucumber production.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.