miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-12-20 DOI:10.3390/jfb15120385
Xiongjun Xu, Junming Feng, Tianze Lin, Runheng Liu, Zhuofan Chen
{"title":"miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway.","authors":"Xiongjun Xu, Junming Feng, Tianze Lin, Runheng Liu, Zhuofan Chen","doi":"10.3390/jfb15120385","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. <b>Methods</b>: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. <b>Results</b>: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. <b>Conclusions</b>: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-181a/ msc负载的纳米羟基磷灰石/胶原通过靶向铁下沉途径加速大鼠骨缺损修复。
背景:颌骨缺损的修复性再生是目前口腔医学领域的一个重要课题。尽管是金标准,自体骨材料也不是没有缺点,包括术后感染的风险增加。因此,能够超越自体骨成骨能力的创新材料的开发已成为研究的关键领域。方法:从人脐带中分离出具有多系分化潜力的间充质干细胞(MSCs),并用miR-181a转染。研究miR-181a/MSC的成骨分化。然后,对miR-181a/ msc负载的纳米羟基磷灰石(nHAC)支架的理化性质进行表征,并探讨其在大鼠颅骨缺损修复中的作用及其潜在机制。结果:miR-181a在MSCs中过表达可显著促进成骨分化,碱性磷酸酶活性和成骨标志物的表达均增加。miR-181a/ msc负载的nHAC支架在体内表现出良好的生物活性,加速骨组织修复和胶原分泌。机制研究表明,miR-181a直接靶向TP53/SLC7A11通路,抑制铁下沉,增强MSCs的成骨能力。结论:本研究表明,miR-181a/ msc负载的nHAC支架通过促进成骨分化和抑制铁下沉,显著增强骨缺损修复。这些发现为MSC成骨调控的分子机制提供了新的见解,并为骨缺损修复提供了有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Preventing Oral Dual Biofilm Development with Innovative Bioactive Varnishes. Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions. The Relationship Between Peri-Implant Marginal Bone Loss and Resonance Frequency Analysis. Bisphenol A Release from Fiber-Reinforced vs. Conventional Stainless-Steel Fixed Retainers: An In Vitro Study. Effect of Sequential vs. Simultaneous Dual Growth Factor Release from Structured Heparin-Poly-Electrolyte Multilayer Coatings on Peri-Implant Bone Formation and Angiogenesis in Pig Mandibles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1