Angela De Luca, Roberta Ruggiero, Aurora Cordaro, Benedetta Marrelli, Lavinia Raimondi, Viviana Costa, Daniele Bellavia, Elisabetta Aiello, Matteo Pavarini, Antonio Piccininni, Marco Tatullo, Elisa Boanini, Francesco Paduano, Gianluca Giavaresi
{"title":"Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.","authors":"Angela De Luca, Roberta Ruggiero, Aurora Cordaro, Benedetta Marrelli, Lavinia Raimondi, Viviana Costa, Daniele Bellavia, Elisabetta Aiello, Matteo Pavarini, Antonio Piccininni, Marco Tatullo, Elisa Boanini, Francesco Paduano, Gianluca Giavaresi","doi":"10.3390/jfb15120382","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results. To address these inherent characteristics of Mg alloys, developing improved methods that accurately simulate the physiological environment for in vitro biocompatibility testing is essential. This study introduces two novel extraction approaches for evaluating Mg alloys: a buffered solution utilizing PBS/DMEM with quaternary dilutions and a modified ISO standard protocol employing decuple dilution of conventional unbuffered extracts. The present findings establish that controlled optimization of extraction conditions, specifically buffer composition and dilution parameters, enables reliable in vitro cytotoxicity assessment of Mg alloys, providing a robust methodology that advances the preclinical evaluation of these promising biodegradable materials.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120382","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results. To address these inherent characteristics of Mg alloys, developing improved methods that accurately simulate the physiological environment for in vitro biocompatibility testing is essential. This study introduces two novel extraction approaches for evaluating Mg alloys: a buffered solution utilizing PBS/DMEM with quaternary dilutions and a modified ISO standard protocol employing decuple dilution of conventional unbuffered extracts. The present findings establish that controlled optimization of extraction conditions, specifically buffer composition and dilution parameters, enables reliable in vitro cytotoxicity assessment of Mg alloys, providing a robust methodology that advances the preclinical evaluation of these promising biodegradable materials.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.