{"title":"From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in <i>Monascus</i> Species.","authors":"Yunxia Gong, Shengfa Li, Deqing Zhao, Xi Yuan, Yin Zhou, Fusheng Chen, Yanchun Shao","doi":"10.3390/jof10120892","DOIUrl":null,"url":null,"abstract":"<p><p><i>Monascus</i>, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as <i>Monascus</i> azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, <i>Monascus</i> spp. are not model fungi, and knowledge of their genetics is limited, which is a great challenge in understanding physiological and biochemical phenomena at the genetic level. Since the first application of particle bombardment to explore gene function, it has become feasible to link the phenotypic variation and genomic information on <i>Monascus</i> strains. In recent decades, accurate gene editing assisted by genomic information has provided a solution to analyze the functions of genes involved in the metabolism and development of <i>Monascus</i> spp. at the molecular level. This review summarizes most of the genetic manipulation tools used in <i>Monascus</i> spp. and emphasizes <i>Agrobacterium tumefaciens</i>-mediated transformation and nuclease-guided gene editing, providing comprehensive references for scholars to select suitable genetic manipulation tools to investigate the functions of genes of interest in <i>Monascus</i> spp.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"10 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10120892","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monascus, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as Monascus azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, Monascus spp. are not model fungi, and knowledge of their genetics is limited, which is a great challenge in understanding physiological and biochemical phenomena at the genetic level. Since the first application of particle bombardment to explore gene function, it has become feasible to link the phenotypic variation and genomic information on Monascus strains. In recent decades, accurate gene editing assisted by genomic information has provided a solution to analyze the functions of genes involved in the metabolism and development of Monascus spp. at the molecular level. This review summarizes most of the genetic manipulation tools used in Monascus spp. and emphasizes Agrobacterium tumefaciens-mediated transformation and nuclease-guided gene editing, providing comprehensive references for scholars to select suitable genetic manipulation tools to investigate the functions of genes of interest in Monascus spp.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.