Trained Immunity Enhances Host Resistance to Infection in Aged Mice.

IF 3.6 3区 医学 Q3 CELL BIOLOGY Journal of Leukocyte Biology Pub Date : 2024-12-26 DOI:10.1093/jleuko/qiae259
Dan Hao, Katherine R Caja, Margaret A McBride, Allison M Owen, Julia K Bohannon, Antonio Hernandez, Sabah Ali, Sujata Dalal, David L Williams, Edward R Sherwood
{"title":"Trained Immunity Enhances Host Resistance to Infection in Aged Mice.","authors":"Dan Hao, Katherine R Caja, Margaret A McBride, Allison M Owen, Julia K Bohannon, Antonio Hernandez, Sabah Ali, Sujata Dalal, David L Williams, Edward R Sherwood","doi":"10.1093/jleuko/qiae259","DOIUrl":null,"url":null,"abstract":"<p><p>Aging significantly increases the incidence and severity of infections, with individuals aged 65 and above accounting for 65% of sepsis cases. Innate immune training, known as \"trained immunity\" or \"innate immune memory\", has emerged as a potential strategy to enhance infection resistance by modulating the aging immune system. We investigated the impact of β-glucan-induced trained immunity on aged mice (18-20 months old) compared to young adult mice (10-12 weeks old). Our findings showed that β-glucan equally augmented the host resistance to infection in both young and aged mice. This enhancement was characterized by augmented bacterial clearance, enhanced leukocyte recruitment and decreased cytokine production in response to Pseudomonas aeruginosa infection. Furthermore, young and aged trained macrophages displayed heightened metabolic capacity and improved antimicrobial functions, including enhanced phagocytosis and respiratory burst. RNA-seq analysis showed a distinctive gene expression pattern induced by trained immunity in macrophages characterized by activation of pathways regulating inflammation and the host response to infection and suppression of pathways regulating cell division, which was consistently observed in both young and aged groups. As compared to macrophages from young mice, aged macrophages showed increased activation of gene ontology pathways regulating angiogenesis, connective tissue deposition and wound healing. Our results indicate that immune training can be effectively induced in aging mice, providing valuable insights into potential strategies for enhancing infection resistance in the elderly.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging significantly increases the incidence and severity of infections, with individuals aged 65 and above accounting for 65% of sepsis cases. Innate immune training, known as "trained immunity" or "innate immune memory", has emerged as a potential strategy to enhance infection resistance by modulating the aging immune system. We investigated the impact of β-glucan-induced trained immunity on aged mice (18-20 months old) compared to young adult mice (10-12 weeks old). Our findings showed that β-glucan equally augmented the host resistance to infection in both young and aged mice. This enhancement was characterized by augmented bacterial clearance, enhanced leukocyte recruitment and decreased cytokine production in response to Pseudomonas aeruginosa infection. Furthermore, young and aged trained macrophages displayed heightened metabolic capacity and improved antimicrobial functions, including enhanced phagocytosis and respiratory burst. RNA-seq analysis showed a distinctive gene expression pattern induced by trained immunity in macrophages characterized by activation of pathways regulating inflammation and the host response to infection and suppression of pathways regulating cell division, which was consistently observed in both young and aged groups. As compared to macrophages from young mice, aged macrophages showed increased activation of gene ontology pathways regulating angiogenesis, connective tissue deposition and wound healing. Our results indicate that immune training can be effectively induced in aging mice, providing valuable insights into potential strategies for enhancing infection resistance in the elderly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Leukocyte Biology
Journal of Leukocyte Biology 医学-免疫学
CiteScore
11.50
自引率
0.00%
发文量
358
审稿时长
2 months
期刊介绍: JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.
期刊最新文献
Foxo1 drives the TGFβ1-dependent dichotomy of Th17 cell fates. A comprehensively prognostic and immunological analysis of PARP11 in pan-cancer. In-depth human immune cellular profiling from newborn to frail. Specific BCG-related gene expression levels correlate with immune cell infiltration and prognosis in melanoma. Deubiquitination of aryl hydrocarbon receptor by USP21 negatively regulates T helper 17 cell differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1