Th17 and effector CD8 T cells relate to disease progression in amyotrophic lateral sclerosis: a case control study.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-12-27 DOI:10.1186/s12974-024-03327-w
Tatsuo Itou, Koji Fujita, Yuumi Okuzono, Dnyaneshwar Warude, Shuuichi Miyakawa, Yoshimi Mihara, Naoko Matsui, Hiroyuki Morino, Yusuke Kikukawa, Yuishin Izumi
{"title":"Th17 and effector CD8 T cells relate to disease progression in amyotrophic lateral sclerosis: a case control study.","authors":"Tatsuo Itou, Koji Fujita, Yuumi Okuzono, Dnyaneshwar Warude, Shuuichi Miyakawa, Yoshimi Mihara, Naoko Matsui, Hiroyuki Morino, Yusuke Kikukawa, Yuishin Izumi","doi":"10.1186/s12974-024-03327-w","DOIUrl":null,"url":null,"abstract":"<p><p>The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS. Our analysis revealed increased frequencies of T helper 17 cells (Th17) relative to regulatory T cells, effector CD8 T cells relative to naïve CD8 T cells, and CD16<sup>high</sup>CD56<sup>low</sup> mature natural killer cells relative to CD16<sup>low</sup>CD56<sup>high</sup> naïve natural killer cells in patients with rapidly progressive ALS. Additionally, we employed serum proteomics through a proximity extension assay combined with next-generation sequencing to identify inflammation-related proteins associated with rapid disease progression. Among these proteins, interleukin-17 A correlated with the frequency of Th17, while killer cell lectin-like receptor D1 (CD94) correlated with the frequency of effector CD8 T cells. These findings further support the active roles played by these specific immune cell types in the progression of ALS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"331"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03327-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS. Our analysis revealed increased frequencies of T helper 17 cells (Th17) relative to regulatory T cells, effector CD8 T cells relative to naïve CD8 T cells, and CD16highCD56low mature natural killer cells relative to CD16lowCD56high naïve natural killer cells in patients with rapidly progressive ALS. Additionally, we employed serum proteomics through a proximity extension assay combined with next-generation sequencing to identify inflammation-related proteins associated with rapid disease progression. Among these proteins, interleukin-17 A correlated with the frequency of Th17, while killer cell lectin-like receptor D1 (CD94) correlated with the frequency of effector CD8 T cells. These findings further support the active roles played by these specific immune cell types in the progression of ALS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
Microglia and Immune cells interactions in multiple sclerosis cognitive impairment: a postmortem study. CCR2 restricts IFN-γ production by hippocampal CD8 TRM cells that impair learning and memory during recovery from WNV encephalitis. Th17 and effector CD8 T cells relate to disease progression in amyotrophic lateral sclerosis: a case control study. Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance. Prostanoid signaling in retinal cells elicits inflammatory responses relevant to early-stage diabetic retinopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1