Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-12-24 DOI:10.1016/j.jneumeth.2024.110354
L M L Kok, K Helwegen, N F Coveña, V M Heine
{"title":"Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro.","authors":"L M L Kok, K Helwegen, N F Coveña, V M Heine","doi":"10.1016/j.jneumeth.2024.110354","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.</p><p><strong>New method: </strong>In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.</p><p><strong>Results: </strong>hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.</p><p><strong>Conclusion: </strong>Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110354"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110354","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.

New method: In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.

Results: hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.

Conclusion: Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans. An adaptive protocol to assess physiological responses as a function of task demand in speech-in-noise testing. Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro. IDyOMpy: A new Python-based model for statistical analysis of musical expectations. SSSort 2.0: A semi-automated spike detection and sorting system for single sensillum recordings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1