Xiao Liu, Wentao Zhao, Yan Li, Zhongliang Sun, Chang Lu, Liqin Sun
{"title":"Genome Analysis of a Polysaccharide-Degrading Bacterium <i>Microbulbifer</i> sp. HZ11 and Degradation of Alginate.","authors":"Xiao Liu, Wentao Zhao, Yan Li, Zhongliang Sun, Chang Lu, Liqin Sun","doi":"10.3390/md22120569","DOIUrl":null,"url":null,"abstract":"<p><p>Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the <i>Microbulbifer</i> genus, <i>Microbulbifer</i> sp. HZ11. The strain HZ11 is Gram-negative, aerobic, flagellate-free, and rod-shaped. The genome of strain HZ11 is a 4,248,867 bp circular chromosome with an average GC content of 56.68%. HZ11 can degrade alginate and other polysaccharides. The carbohydrate-active enzyme (CAZyme) genes account for 4.57% of the total protein-coding genes of HZ11. Its alginate metabolism process is consistent with the characteristics of the polysaccharide utilization locus (PUL) system. The alginate lyase produced by strain HZ11 showed the highest activity at 50 °C, pH 8.5, and 0.1 M NaCl. The substrate preference was as follows: sodium alginate > poly mannuronic acid > poly guluronic acid. The thin layer chromatography (TLC) results revealed that the main enzymatic degradation products were monosaccharides or AOSs with a degree of polymerization (DP) of 2-3. These results help clarify the metabolism and utilization mechanism of alginate by marine bacteria and provide a theoretical reference for its application in the degradation of alginate and other polysaccharides.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22120569","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the Microbulbifer genus, Microbulbifer sp. HZ11. The strain HZ11 is Gram-negative, aerobic, flagellate-free, and rod-shaped. The genome of strain HZ11 is a 4,248,867 bp circular chromosome with an average GC content of 56.68%. HZ11 can degrade alginate and other polysaccharides. The carbohydrate-active enzyme (CAZyme) genes account for 4.57% of the total protein-coding genes of HZ11. Its alginate metabolism process is consistent with the characteristics of the polysaccharide utilization locus (PUL) system. The alginate lyase produced by strain HZ11 showed the highest activity at 50 °C, pH 8.5, and 0.1 M NaCl. The substrate preference was as follows: sodium alginate > poly mannuronic acid > poly guluronic acid. The thin layer chromatography (TLC) results revealed that the main enzymatic degradation products were monosaccharides or AOSs with a degree of polymerization (DP) of 2-3. These results help clarify the metabolism and utilization mechanism of alginate by marine bacteria and provide a theoretical reference for its application in the degradation of alginate and other polysaccharides.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.