[Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data].

Shuying Wang, Xinyu Liu, Rundong Li, Yang Li
{"title":"[Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data].","authors":"Shuying Wang, Xinyu Liu, Rundong Li, Yang Li","doi":"10.12122/j.issn.1673-4254.2024.12.23","DOIUrl":null,"url":null,"abstract":"<p><p><b>OBJECTIVE</b>: To assess the validity and effectiveness of parameter estimation using a time-dependent Weibull proportional hazards model for survival analysis containing partly interval censored data and explore the impact of different covariates on the results of analysis. <b>METHODS</b>: We established a time-dependent Weibull proportional hazards model using the Weibull distribution as the baseline hazard function of the model which incorporated time-varying covariates. Maximum likelihood estimation was employed to estimate the model parameters, which were obtained by optimization of the likelihood function. <b>RESULTS AND CONCLUSION</b>: Numerical simulation results showed that with higher proportions of precise observations across different sample sizes and parameter settings, the proposed model resulted in improved accuracy of parameter estimation with coverage probabilities approximating the theoretical expectation of 95%. As the sample sizes increased, the parameter biases of the model tended to decrease. Experiments with empirical data further validated the effectiveness of the model. Compared with the failure time data for each precisely observed individual, additional interval-censored data helped to obtain more effective estimates of the regression parameters. Comparison with the Cox model that included time-varying covariates further demonstrated the effectiveness of the time-dependent Weibull proportional hazards model for parameter estimation in survival analysis with partly interval censored data.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"44 12","pages":"2461-2468"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2024.12.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

OBJECTIVE: To assess the validity and effectiveness of parameter estimation using a time-dependent Weibull proportional hazards model for survival analysis containing partly interval censored data and explore the impact of different covariates on the results of analysis. METHODS: We established a time-dependent Weibull proportional hazards model using the Weibull distribution as the baseline hazard function of the model which incorporated time-varying covariates. Maximum likelihood estimation was employed to estimate the model parameters, which were obtained by optimization of the likelihood function. RESULTS AND CONCLUSION: Numerical simulation results showed that with higher proportions of precise observations across different sample sizes and parameter settings, the proposed model resulted in improved accuracy of parameter estimation with coverage probabilities approximating the theoretical expectation of 95%. As the sample sizes increased, the parameter biases of the model tended to decrease. Experiments with empirical data further validated the effectiveness of the model. Compared with the failure time data for each precisely observed individual, additional interval-censored data helped to obtain more effective estimates of the regression parameters. Comparison with the Cox model that included time-varying covariates further demonstrated the effectiveness of the time-dependent Weibull proportional hazards model for parameter estimation in survival analysis with partly interval censored data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
南方医科大学学报杂志
南方医科大学学报杂志 Medicine-Medicine (all)
CiteScore
1.50
自引率
0.00%
发文量
208
期刊介绍:
期刊最新文献
[Performance of multi-modality and multi-classifier fusion models for predicting radiation-induced oral mucositis in patients with nasopharyngeal carcinoma]. [PHPS1 enhances PD-L1 serine phosphorylation by regulating ROS/SHP-2/AMPK activity to promote apoptosis of oral squamous cell carcinoma cells]. [Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice]. [Risk factors of recurrence of acute ischemic stroke and construction of a nomogram model for predicting the recurrence risk based on Lasso Regression]. [Relationship between traditional Chinese cultural beliefs and suicide risk among Chinese medical postgraduate students].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1