Autophagy Modulates Glioblastoma Cell Sensitivity to Selinexor-mediated XPO1 inhibition.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2024-12-28 DOI:10.1093/neuonc/noae280
Yongjian Tang, Lisa Sprinzen, Yukinori Terada, Karrie M Kiang, Chuntao Li, Yu Zeng, Fangkun Liu, Hongshu Zhou, Xisong Liang, Jianzhong Zhang, Russell O Pieper, Bo Chen, Liyang Zhang
{"title":"Autophagy Modulates Glioblastoma Cell Sensitivity to Selinexor-mediated XPO1 inhibition.","authors":"Yongjian Tang, Lisa Sprinzen, Yukinori Terada, Karrie M Kiang, Chuntao Li, Yu Zeng, Fangkun Liu, Hongshu Zhou, Xisong Liang, Jianzhong Zhang, Russell O Pieper, Bo Chen, Liyang Zhang","doi":"10.1093/neuonc/noae280","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.</p><p><strong>Methods: </strong>Patient-derived GBM cells were treated with Selinexor, and drug response and autophagy levels were monitored. Homozygous C528S XPO1 mutant GBM43 cells were generated by CRISPR/Cas9 editing. Single Selinexor or combination treatment with autophagy inhibitors was evaluated. In addition, bulk-tissue, single-cell, and spatial transcriptome were analyzed, and molecular docking was performed.</p><p><strong>Results: </strong>Although all cell lines exhibited a dose- and time-dependent reduction of cell viability, the most profound molecular response to Selinexor was induction of autophagy instead of apoptosis. Selinexor-induced autophagy was an on-target consequence of XPO1 inhibition, and could be mitigated by expression of a mutant, Selinexor-resistant form of XPO1, and Selinexor-induced autophagy was related at least in part to nuclear trapping of the transcription factor TFEB. Furthermore, genetic or pharmacologic suppression of autophagy sensitized the cells to Selinexor-induced toxicity in association with the induction of apoptosis. Finally, in intracranial PDX studies, the combination of Selinexor with the autophagy inhibitor chloroquine significantly impeded tumor growth and extended mouse survival relative to single-agent treatment.</p><p><strong>Conclusion: </strong>These results suggest that activation of autophagy confers a protective mechanism against Selinexor in GBM cells, and that the combination of Selinexor with autophagy inhibitors may serve as a viable means to enhance Selinexor-induced cell death.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae280","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

Methods: Patient-derived GBM cells were treated with Selinexor, and drug response and autophagy levels were monitored. Homozygous C528S XPO1 mutant GBM43 cells were generated by CRISPR/Cas9 editing. Single Selinexor or combination treatment with autophagy inhibitors was evaluated. In addition, bulk-tissue, single-cell, and spatial transcriptome were analyzed, and molecular docking was performed.

Results: Although all cell lines exhibited a dose- and time-dependent reduction of cell viability, the most profound molecular response to Selinexor was induction of autophagy instead of apoptosis. Selinexor-induced autophagy was an on-target consequence of XPO1 inhibition, and could be mitigated by expression of a mutant, Selinexor-resistant form of XPO1, and Selinexor-induced autophagy was related at least in part to nuclear trapping of the transcription factor TFEB. Furthermore, genetic or pharmacologic suppression of autophagy sensitized the cells to Selinexor-induced toxicity in association with the induction of apoptosis. Finally, in intracranial PDX studies, the combination of Selinexor with the autophagy inhibitor chloroquine significantly impeded tumor growth and extended mouse survival relative to single-agent treatment.

Conclusion: These results suggest that activation of autophagy confers a protective mechanism against Selinexor in GBM cells, and that the combination of Selinexor with autophagy inhibitors may serve as a viable means to enhance Selinexor-induced cell death.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Nanopore Sequencing as a Cutting-Edge Technology for Medulloblastoma Classification. Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor. Autophagy Modulates Glioblastoma Cell Sensitivity to Selinexor-mediated XPO1 inhibition. The inconsistent terminology for the extent of resection in glioblastoma: A systematic review on 6 decades of neuro-oncological studies. Inhibiting glioblastoma stem cells by targeting pyruvate carboxylase: a novel therapeutic strategy with both opportunities and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1