Jinhui Tang, Chang Gao, Yi Li, Jie Xu, Jiale Huang, Disheng Xu, Zhangli Hu, Fangyu Han, Jiaping Liu
{"title":"A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application.","authors":"Jinhui Tang, Chang Gao, Yi Li, Jie Xu, Jiale Huang, Disheng Xu, Zhangli Hu, Fangyu Han, Jiaping Liu","doi":"10.34133/research.0518","DOIUrl":null,"url":null,"abstract":"<p><p>Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0518"},"PeriodicalIF":11.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0518","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.