[Research progress in anti-enzymatic antimicrobial peptides].

Q4 Biochemistry, Genetics and Molecular Biology Sheng wu gong cheng xue bao = Chinese journal of biotechnology Pub Date : 2024-12-25 DOI:10.13345/j.cjb.240077
Changxuan Shao, Mengcheng Wang, Yuanmengxue Wang, Shiqi He, Yongjie Zhu, Anshan Shan
{"title":"[Research progress in anti-enzymatic antimicrobial peptides].","authors":"Changxuan Shao, Mengcheng Wang, Yuanmengxue Wang, Shiqi He, Yongjie Zhu, Anshan Shan","doi":"10.13345/j.cjb.240077","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are small molecular peptides widely existing in the innate immunity of organisms, serving as the first line of defense. Natural AMPs possess various biological activities and are difficult to develop drug resistance. However, they are easily broken down by digestive enzymes in the body. In recent years, increasing methods have been reported to enhance the stability of AMPs, including incorporation of unnatural amino acids, chemical modifications, strategic avoidance of enzyme cleavage sites, cyclization, and nano peptide design. This review summarizes the methods for improving the stability of AMPs against protease degradation, aiming to provide references for further research in this field.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 12","pages":"4396-4407"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are small molecular peptides widely existing in the innate immunity of organisms, serving as the first line of defense. Natural AMPs possess various biological activities and are difficult to develop drug resistance. However, they are easily broken down by digestive enzymes in the body. In recent years, increasing methods have been reported to enhance the stability of AMPs, including incorporation of unnatural amino acids, chemical modifications, strategic avoidance of enzyme cleavage sites, cyclization, and nano peptide design. This review summarizes the methods for improving the stability of AMPs against protease degradation, aiming to provide references for further research in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
期刊最新文献
[Advances in the anti-host interferon immune response of bluetongue virus]. [Characterization of host factors ARF4 and ARF5 upon Zika virus infection in vivo by construction of gene knockout mice]. [Construction of a muscle-specific synthetic promoter library and correlation analysis of the element composition and activity of highly active promoters]. [Construction of a recombinant Bacillus subtilis strain expressing SpaA and CbpB of Erysipelothrix rhusiopathiae and evaluation of the strain immunogenicity in a mouse model]. [Effect of overexpression of aldehyde dehydrogenase family member A2 on hypertrophic growth and proliferation of cardiomyocytes].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1