Predicting Consanguinity Rates from Exome Sequencing Data in the Lebanese Population.

IF 3.4 3区 医学 Q1 PATHOLOGY Journal of Molecular Diagnostics Pub Date : 2024-12-24 DOI:10.1016/j.jmoldx.2024.11.008
Eileen Marie Hanna, Cybel Mehawej, Joelle Assy, Sandra Corbani, Rima Korban, Andre Megarbane, Eliane Chouery
{"title":"Predicting Consanguinity Rates from Exome Sequencing Data in the Lebanese Population.","authors":"Eileen Marie Hanna, Cybel Mehawej, Joelle Assy, Sandra Corbani, Rima Korban, Andre Megarbane, Eliane Chouery","doi":"10.1016/j.jmoldx.2024.11.008","DOIUrl":null,"url":null,"abstract":"<p><p>Consanguinity, prevalent in certain populations because of cultural and social factors, significantly increases the risk of genetic autosomal recessive disorders. In Lebanon, consanguineous marriages constitute 35.5% of unions, with first cousin marriages being the most common. This study aims to develop a model to predict consanguinity status using total runs of homozygosity (ROH) size derived from exome sequencing data. In this study, a cohort of 784 Lebanese individuals was analyzed, with consanguinity labels assigned based on pedigree information. ROHs were detected from exome sequencing data using AutoMap. The analysis focused on 521 subjects for whom the consanguinity or nonconsanguinity label was clearly determined, leading to the development of two logistic regression models: one including outliers (accuracy, 91%) and one excluding them (accuracy, 94%). The second model established specific ROH thresholds for categorizing consanguinity: nonconsanguineous [<40.28 megabases (Mb)], uncertain (40.28 to 79.17 Mb), probable consanguinity (79.17 to 118.06 Mb), and consanguineous (>118.06 Mb). This study provides a valuable tool for clinical genetics in populations with high consanguinity rates, offering insights into the genetic risks associated with consanguinity and aiding in the identification and counseling of affected individuals. Moreover, the current findings underline the importance of population-specific thresholds in accurately assessing consanguinity status.</p>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmoldx.2024.11.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Consanguinity, prevalent in certain populations because of cultural and social factors, significantly increases the risk of genetic autosomal recessive disorders. In Lebanon, consanguineous marriages constitute 35.5% of unions, with first cousin marriages being the most common. This study aims to develop a model to predict consanguinity status using total runs of homozygosity (ROH) size derived from exome sequencing data. In this study, a cohort of 784 Lebanese individuals was analyzed, with consanguinity labels assigned based on pedigree information. ROHs were detected from exome sequencing data using AutoMap. The analysis focused on 521 subjects for whom the consanguinity or nonconsanguinity label was clearly determined, leading to the development of two logistic regression models: one including outliers (accuracy, 91%) and one excluding them (accuracy, 94%). The second model established specific ROH thresholds for categorizing consanguinity: nonconsanguineous [<40.28 megabases (Mb)], uncertain (40.28 to 79.17 Mb), probable consanguinity (79.17 to 118.06 Mb), and consanguineous (>118.06 Mb). This study provides a valuable tool for clinical genetics in populations with high consanguinity rates, offering insights into the genetic risks associated with consanguinity and aiding in the identification and counseling of affected individuals. Moreover, the current findings underline the importance of population-specific thresholds in accurately assessing consanguinity status.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从黎巴嫩人群外显子组测序数据预测亲缘率。
由于文化和社会因素,在某些人群中普遍存在的血缘关系显著增加了遗传常染色体隐性遗传病(AR)的风险。在黎巴嫩,近亲婚姻占婚姻总数的35.5%,其中表亲婚姻最为常见。本研究旨在建立一个模型,利用外显子组测序(ES)数据得出的纯合性(ROH)大小的总运行数来预测亲属状况。在这项研究中,对784名黎巴嫩人进行了队列分析,并根据家谱信息分配了亲属标签。使用AutoMap从ES数据中检测ROHs。分析的重点是521名受试者,他们的血缘或非血缘标签明确确定,导致两种逻辑回归模型的发展:一种包括异常值(准确率91%),另一种不包括异常值(准确率94%)。第二个模型建立了特定的ROH阈值来划分血缘关系:非血缘关系(118.06 Mb)。本研究为高血缘人群的临床遗传学研究提供了有价值的工具,提供了与血缘相关的遗传风险的见解,并有助于识别和咨询受影响的个体。此外,目前的研究结果强调了人口特异性阈值在准确评估血亲状况方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
2.40%
发文量
143
审稿时长
43 days
期刊介绍: The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.
期刊最新文献
Optimization of pre-analytical handling to maintain DNA integrity in diagnostic Papanicolaou tests. Correction. Correction. Analytical Validation of the Labcorp Plasma Complete Test, a Cell-Free DNA Comprehensive Genomic Profiling Tool for Precision Oncology. OLAgen: A Software Tool for Reagent Design to Expand Access to Single-Nucleotide Variant Detection by the Oligonucleotide Ligation Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1