Theodoros Leontiou, Anna Frixou, Marios Charalambides, Efstathios Stiliaris, Costas N Papanicolas, Sofia Nikolaidou, Antonis Papadakis
{"title":"Three-Dimensional Thermal Tomography with Physics-Informed Neural Networks.","authors":"Theodoros Leontiou, Anna Frixou, Marios Charalambides, Efstathios Stiliaris, Costas N Papanicolas, Sofia Nikolaidou, Antonis Papadakis","doi":"10.3390/tomography10120140","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. <b>Methods</b>: In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations. A physics-informed loss function embedding the heat equation was used in conjunction with statistical uncertainty during training to simulate realistic scenarios. <b>Results</b>: The CNN achieved high accuracy for small phantoms (e.g., 10 cm in diameter). However, under non-ideal conditions, the network's predictive capacity diminished in larger domains, particularly in regions distant from the surface. The introduction of physical constraints in the training processes improved the model's robustness in noisy environments, enabling accurate reconstruction of hot-spots in deeper regions where traditional CNNs struggled. <b>Conclusions</b>: Combining deep learning with physical constraints provides a robust framework for non-invasive thermal imaging and other applications requiring high-precision temperature field reconstruction, particularly under non-ideal conditions.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 12","pages":"1930-1946"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10120140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. Methods: In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations. A physics-informed loss function embedding the heat equation was used in conjunction with statistical uncertainty during training to simulate realistic scenarios. Results: The CNN achieved high accuracy for small phantoms (e.g., 10 cm in diameter). However, under non-ideal conditions, the network's predictive capacity diminished in larger domains, particularly in regions distant from the surface. The introduction of physical constraints in the training processes improved the model's robustness in noisy environments, enabling accurate reconstruction of hot-spots in deeper regions where traditional CNNs struggled. Conclusions: Combining deep learning with physical constraints provides a robust framework for non-invasive thermal imaging and other applications requiring high-precision temperature field reconstruction, particularly under non-ideal conditions.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.