{"title":"Metabolic Mode of Alginate-Encapsulated Human Mesenchymal Stromal Cells as a Background for Storage at Ambient Temperature.","authors":"Natalia Trufanova, Oleksandra Hubenia, Yurii Kot, Oleh Trufanov, Ihor Kovalenko, Kateryna Kot, Oleksandr Petrenko","doi":"10.1089/bio.2024.0103","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Human mesenchymal stromal cells (MSCs) are attractive for both medical practice and biomedical research. Nonfreezing short-term storage may provide safe and simple transportation and promote the practical use of MSCs. <b><i>Objectives:</i></b> We aimed to determine the duration of efficient storage at ambient temperature (22°C) of human dermal MSCs in different three-dimensional organization and to investigate the role of cell metabolic mode in the resistance to the ambient storage damaging factors. <b><i>Methods:</i></b> MSCs in monolayer, suspension, and encapsulated in alginate microspheres (AMS) were stored in sealed containers at 22°С in culture medium. Viability (fluorescein diacetate /ethidium bromide) and metabolic activity (Alamar Blue assay) were assessed at 0, 3, 7, 10, and 14 days of the storage. Mitochondrial membrane potential (JC-1 test), cell cycle analysis, reactive oxygen species level, and resistance to hydrogen peroxide were analyzed under culture conditions. <b><i>Results:</i></b> Alginate encapsulation was shown to maintain viability (about 85%), metabolic activity, and adhesion ability during storage for 7 days. The storage of MSCs in both monolayer and suspension was less efficient. Culture of MSCs in AMS decreased basal metabolic activity, mitochondrial activity, and led to reversible cell cycle arrest compared to standard two-dimensional culture. MSCs in AMS have a lower basal level of reactive oxygen species and higher resistance to hydrogen peroxide compared with those in monolayer culture. <b><i>Conclusion:</i></b> Revealed shift into quiescent metabolic mode is essential for alginate-encapsulated MSCs resistance to storage at ambient temperature.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2024.0103","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Human mesenchymal stromal cells (MSCs) are attractive for both medical practice and biomedical research. Nonfreezing short-term storage may provide safe and simple transportation and promote the practical use of MSCs. Objectives: We aimed to determine the duration of efficient storage at ambient temperature (22°C) of human dermal MSCs in different three-dimensional organization and to investigate the role of cell metabolic mode in the resistance to the ambient storage damaging factors. Methods: MSCs in monolayer, suspension, and encapsulated in alginate microspheres (AMS) were stored in sealed containers at 22°С in culture medium. Viability (fluorescein diacetate /ethidium bromide) and metabolic activity (Alamar Blue assay) were assessed at 0, 3, 7, 10, and 14 days of the storage. Mitochondrial membrane potential (JC-1 test), cell cycle analysis, reactive oxygen species level, and resistance to hydrogen peroxide were analyzed under culture conditions. Results: Alginate encapsulation was shown to maintain viability (about 85%), metabolic activity, and adhesion ability during storage for 7 days. The storage of MSCs in both monolayer and suspension was less efficient. Culture of MSCs in AMS decreased basal metabolic activity, mitochondrial activity, and led to reversible cell cycle arrest compared to standard two-dimensional culture. MSCs in AMS have a lower basal level of reactive oxygen species and higher resistance to hydrogen peroxide compared with those in monolayer culture. Conclusion: Revealed shift into quiescent metabolic mode is essential for alginate-encapsulated MSCs resistance to storage at ambient temperature.
Biopreservation and BiobankingBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.