Oliver Roffmann , Meike Stiesch , Christof Hurschler , Andreas Greuling
{"title":"Automatic adjustment of dental crowns using Laplacian mesh editing","authors":"Oliver Roffmann , Meike Stiesch , Christof Hurschler , Andreas Greuling","doi":"10.1016/j.jmbbm.2024.106878","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, the restoration of missing teeth by means of dental implants is a common treatment method in dentistry. Ensuring optimal contact between teeth (occlusion) when designing the occlusal surface of an implant-supported crown is crucial for the patient. Although there are various occlusal concepts and guidelines for achieving optimised occlusion, adapting an occlusal surface is challenging. The contact points must be established in certain areas of the occlusal surface without impairing the aesthetics of the teeth and the masticatory function. A computer-aided, automated modelling approach can assist in the design process and can reduce the reliance on manual labour. This study aimed to develop a modelling approach that enables the automatic adaptation of an occlusal surface to specific occlusal concepts while preserving the natural appearance. In this study, the occlusal surface of an implant-supported crown based on a scanned first right mandibular molar was adopted. Nominal contact points were determined based on occlusal concepts by Ramfjord and Ash (RA) and Thomas (T). The shape of the occlusal surface was then adapted concerning the desired contact points using Laplacian mesh editing. The modification results were validated for different forces and crown materials (3Y-TZP and PMMA) using a finite element contact analysis. The contact analysis results showed that locations with high compressive stresses correspond with the locations of the nominal contact points. The reaction forces were more evenly distributed in PMMA crowns, due to the lower Young's modulus of PMMA compared to 3Y-TZP. Furthermore, the occlusal scheme with fewer contact points (RA) showed higher maximum reaction forces per contact area. The presented method enables the automated adaptation of an (implant-supported) crown to specific occlusal schemes, proving to be valuable in dental CAD.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106878"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124005101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the restoration of missing teeth by means of dental implants is a common treatment method in dentistry. Ensuring optimal contact between teeth (occlusion) when designing the occlusal surface of an implant-supported crown is crucial for the patient. Although there are various occlusal concepts and guidelines for achieving optimised occlusion, adapting an occlusal surface is challenging. The contact points must be established in certain areas of the occlusal surface without impairing the aesthetics of the teeth and the masticatory function. A computer-aided, automated modelling approach can assist in the design process and can reduce the reliance on manual labour. This study aimed to develop a modelling approach that enables the automatic adaptation of an occlusal surface to specific occlusal concepts while preserving the natural appearance. In this study, the occlusal surface of an implant-supported crown based on a scanned first right mandibular molar was adopted. Nominal contact points were determined based on occlusal concepts by Ramfjord and Ash (RA) and Thomas (T). The shape of the occlusal surface was then adapted concerning the desired contact points using Laplacian mesh editing. The modification results were validated for different forces and crown materials (3Y-TZP and PMMA) using a finite element contact analysis. The contact analysis results showed that locations with high compressive stresses correspond with the locations of the nominal contact points. The reaction forces were more evenly distributed in PMMA crowns, due to the lower Young's modulus of PMMA compared to 3Y-TZP. Furthermore, the occlusal scheme with fewer contact points (RA) showed higher maximum reaction forces per contact area. The presented method enables the automated adaptation of an (implant-supported) crown to specific occlusal schemes, proving to be valuable in dental CAD.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.