A preconditioned 3D multi-domain FMIBEM for near-fault ground motion simulation considering the complete physical process of fault-path-layered sedimentary basin

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2025-02-01 DOI:10.1016/j.enganabound.2024.106088
Zhongxian Liu , Zhenen Huang , Qinghua Han , Lei Huang
{"title":"A preconditioned 3D multi-domain FMIBEM for near-fault ground motion simulation considering the complete physical process of fault-path-layered sedimentary basin","authors":"Zhongxian Liu ,&nbsp;Zhenen Huang ,&nbsp;Qinghua Han ,&nbsp;Lei Huang","doi":"10.1016/j.enganabound.2024.106088","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and precise numerical methods, grounded in physical processes, are crucial for studying ground motion distribution in near-fault complex sites. This study introduces a preconditioned 3D multi-domain fast multipole indirect boundary element method (FMIBEM) that considers complete physical processes, including fault rupture, path propagation, and near-surface complex site response. The computational efficiency of the preconditioned FMIBEM in solving high-frequency ground motions (&gt;3 Hz) is enhanced by over 97 % compared to the regular FMIBEM. Employing preconditioned FMIBEM, we simulate broadband (0–5 Hz) ground motions in near-fault sedimentary basins on a regular workstation, revealing that: (I) sedimentary basins, especially layered ones, significantly amplify near-fault ground motion, with the amplification coefficient of PGA exceeding 5.0; (II) layered sedimentary basins notably increase permanent displacement due to fault slip; (III) sedimentary basins transform unidirectional velocity pulses from fault slip into bidirectional pulses with larger amplitude and longer period.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106088"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and precise numerical methods, grounded in physical processes, are crucial for studying ground motion distribution in near-fault complex sites. This study introduces a preconditioned 3D multi-domain fast multipole indirect boundary element method (FMIBEM) that considers complete physical processes, including fault rupture, path propagation, and near-surface complex site response. The computational efficiency of the preconditioned FMIBEM in solving high-frequency ground motions (>3 Hz) is enhanced by over 97 % compared to the regular FMIBEM. Employing preconditioned FMIBEM, we simulate broadband (0–5 Hz) ground motions in near-fault sedimentary basins on a regular workstation, revealing that: (I) sedimentary basins, especially layered ones, significantly amplify near-fault ground motion, with the amplification coefficient of PGA exceeding 5.0; (II) layered sedimentary basins notably increase permanent displacement due to fault slip; (III) sedimentary basins transform unidirectional velocity pulses from fault slip into bidirectional pulses with larger amplitude and longer period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑断径-层状沉积盆地完整物理过程的近断层地震动模拟预处理三维多域FMIBEM
基于物理过程的高效、精确的数值方法是研究近断层复杂地点地震动分布的关键。本文提出了一种预条件三维多域快速多极间接边界元方法(FMIBEM),该方法考虑了完整的物理过程,包括断层破裂、路径传播和近地表复杂场地响应。与常规FMIBEM相比,预处理FMIBEM在求解高频地面运动(> 3hz)时的计算效率提高了97%以上。利用预处理FMIBEM在常规工作站模拟近断层沉积盆地宽带(0 ~ 5 Hz)地震动,结果表明:(1)沉积盆地尤其是层状沉积盆地对近断层地震动有明显的放大作用,其PGA放大系数超过5.0;(2)层状沉积盆地因断层滑动导致永久位移显著增加;(3)沉积盆地将断层滑动的单向速度脉冲转化为振幅更大、周期更长的双向速度脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
Multi-scale feature fusion quantum depthwise Convolutional Neural Networks for text classification The selection of shape parameter and fictitious radius for RBF collocation method using the modified Franke formula and effective condition number The three-dimensional elastoplastic analysis of bi-directional functionally graded materials using a meshfree global radial basis reproducing kernel particle method Total Lagrangian smoothed particle hydrodynamics for large-strain elastoplasticity with particle resolution refinement using an anisotropic Lagrangian kernel Zonal free element method for solving nonlinear transient heat conduction problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1