Qican Ran , Yunpei Liang , Zhili Yang , Quanle Zou , Chunfeng Ye , Chenglin Tian , Zhaopeng Wu , Bichuan Zhang , Weizhi Wang
{"title":"Deterioration mechanisms of coal mechanical properties under uniaxial multi-level cyclic loading considering initial damage effects","authors":"Qican Ran , Yunpei Liang , Zhili Yang , Quanle Zou , Chunfeng Ye , Chenglin Tian , Zhaopeng Wu , Bichuan Zhang , Weizhi Wang","doi":"10.1016/j.ijrmms.2024.106006","DOIUrl":null,"url":null,"abstract":"<div><div>With the increase in global energy demand, coal remains a vital energy resource. However, during coal mining, coal often experiences both initial damage and cyclic loading, which leads to the deterioration of its mechanical properties. In this study, uniaxial multi-level cyclic loading experiments were performed on initial damage coal specimens (IDCSs) to examine their deformation evolution, energy characteristics, acoustic emission (AE) characteristics, and internal fracture distribution. The results indicate that a higher degree of initial damage leads to a shorter fatigue life of IDCSs, a more significant reduction in strength, and a noticeable decline in the deformation modulus. This indicated that the internal microfractures in the high IDCSs were more fully developed, leading to a reduction of the effective bearing area, an increase in the linear energy dissipation capacity, and the percentage of dissipated energy. Meanwhile, the AE characteristics revealed intense large-scale fracture extension in the coal specimens with higher initial damage, lower AE <em>b</em> -values, and an increased percentage of shear cracks. The spatial and temporal distribution of AE events demonstrated a positive correlation with initial damage. The AE signal parameters of IDCSs exhibited multifractal characteristics, further indicating a more complex failure mode in highly damaged specimens. Additionally, the three-dimensional fracture volume percentage and fractal dimension, which are quantitative measures of internal fractures, also increased with initial damage. Meanwhile, localized areas of high IDCSs were more likely to form domino structures. Ultimately, the macroscopic and microscopic deterioration mechanisms of coal's mechanical properties under the combined influence of initial damage and cyclic loading were revealed. The interaction of initial damage and cyclic loading accelerated the expansion of internal pores and microfractures, reduced inter-particle forces, and significantly deteriorated the coal's mechanical properties. This study enhances the understanding of the deterioration mechanisms in IDCSs and provides a scientific basis for coal mine disaster prevention.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106006"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136516092400371X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increase in global energy demand, coal remains a vital energy resource. However, during coal mining, coal often experiences both initial damage and cyclic loading, which leads to the deterioration of its mechanical properties. In this study, uniaxial multi-level cyclic loading experiments were performed on initial damage coal specimens (IDCSs) to examine their deformation evolution, energy characteristics, acoustic emission (AE) characteristics, and internal fracture distribution. The results indicate that a higher degree of initial damage leads to a shorter fatigue life of IDCSs, a more significant reduction in strength, and a noticeable decline in the deformation modulus. This indicated that the internal microfractures in the high IDCSs were more fully developed, leading to a reduction of the effective bearing area, an increase in the linear energy dissipation capacity, and the percentage of dissipated energy. Meanwhile, the AE characteristics revealed intense large-scale fracture extension in the coal specimens with higher initial damage, lower AE b -values, and an increased percentage of shear cracks. The spatial and temporal distribution of AE events demonstrated a positive correlation with initial damage. The AE signal parameters of IDCSs exhibited multifractal characteristics, further indicating a more complex failure mode in highly damaged specimens. Additionally, the three-dimensional fracture volume percentage and fractal dimension, which are quantitative measures of internal fractures, also increased with initial damage. Meanwhile, localized areas of high IDCSs were more likely to form domino structures. Ultimately, the macroscopic and microscopic deterioration mechanisms of coal's mechanical properties under the combined influence of initial damage and cyclic loading were revealed. The interaction of initial damage and cyclic loading accelerated the expansion of internal pores and microfractures, reduced inter-particle forces, and significantly deteriorated the coal's mechanical properties. This study enhances the understanding of the deterioration mechanisms in IDCSs and provides a scientific basis for coal mine disaster prevention.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.