{"title":"Semi-dry natural carbonation at different relative humidities: Degree of carbonation and reaction kinetics of calcium hydrates in cement paste","authors":"Naohiko Saeki, Ryo Kurihara, Takahiro Ohkubo, Atsushi Teramoto, Yuya Suda, Ryoma Kitagaki, Ippei Maruyama","doi":"10.1016/j.cemconres.2024.107777","DOIUrl":null,"url":null,"abstract":"This study investigated semi-dry carbonation at different relative humidities (RH) under atmospheric CO<sub>2</sub> concentrations to determine the effect of RH on the degree of carbonation (DoC) and reaction rates. The carbonation kinetics of each calcium-containing hydrate exhibited an initial rapid chemical-reaction-limited stage, followed by a significantly slower stage. DoC values plateaued after 200 days of carbonation, reaching 78 % at 95 % RH and 34 % at 33 % RH, aligning with EN 16757 values for sheltered outdoor and indoor environments, respectively. When the samples reached a stable DoC at a given RH, further carbonation occurred upon exposure to higher RH, implying that the DoC was governed by the highest RH to which the samples had been exposed. The phase assemblage was also affected, approaching thermodynamic equilibrium at higher RH but deviating at lower RH due to the formation of local equilibria and the presence of metastable phases.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"35 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107777","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated semi-dry carbonation at different relative humidities (RH) under atmospheric CO2 concentrations to determine the effect of RH on the degree of carbonation (DoC) and reaction rates. The carbonation kinetics of each calcium-containing hydrate exhibited an initial rapid chemical-reaction-limited stage, followed by a significantly slower stage. DoC values plateaued after 200 days of carbonation, reaching 78 % at 95 % RH and 34 % at 33 % RH, aligning with EN 16757 values for sheltered outdoor and indoor environments, respectively. When the samples reached a stable DoC at a given RH, further carbonation occurred upon exposure to higher RH, implying that the DoC was governed by the highest RH to which the samples had been exposed. The phase assemblage was also affected, approaching thermodynamic equilibrium at higher RH but deviating at lower RH due to the formation of local equilibria and the presence of metastable phases.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.