{"title":"Enhancing Photocatalytic Water Splitting via GeC/SGaSnP Z-Scheme Heterojunctions with Built-in Electric Fields","authors":"Lou Wenhua, Gang Liu, Xiaoguang Ma, Chuan-Lu Yang, Lixun Feng, Ying Liu, Xiaochun Gao","doi":"10.1039/d4ta07893d","DOIUrl":null,"url":null,"abstract":"Effective photocatalysts are essential for hydrogen production through water splitting. In this study, we predict a Z-scheme heterojunction composed of GeC and Janus SGaSnP monolayers. Binding energy analysis reveals that the heterojunction exhibit excellent thermodynamic stability, particularly in the B- and D-stacking configurations. The electronic structure of the heterojunction reveals strong charge separation and migration properties, driven by the built-in electric field and Janus monolayer polarization, effectively suppressing carrier recombination. Optical absorption and free energy calculations indicate strong visible light absorption, with low hydrogen evolution reaction (HER) free energy barriers of 0.23 eV for both B- and D-stacking configurations. The oxygen evolution reaction (OER) energy barriers are close to the theoretical minimum, at 1.44 eV and 1.48 eV, respectively. Nonadiabatic molecular dynamics (NAMD) simulations show extended electron and hole transfer times, highlighting the potential for efficient photocatalytic hydrogen and oxygen generation.These results suggest the GeC/SGaSnP Z-scheme heterojunction as a promising candidate for advancing photocatalytic water-splitting technologies, with strong catalytic performance and stability.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"0 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07893d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective photocatalysts are essential for hydrogen production through water splitting. In this study, we predict a Z-scheme heterojunction composed of GeC and Janus SGaSnP monolayers. Binding energy analysis reveals that the heterojunction exhibit excellent thermodynamic stability, particularly in the B- and D-stacking configurations. The electronic structure of the heterojunction reveals strong charge separation and migration properties, driven by the built-in electric field and Janus monolayer polarization, effectively suppressing carrier recombination. Optical absorption and free energy calculations indicate strong visible light absorption, with low hydrogen evolution reaction (HER) free energy barriers of 0.23 eV for both B- and D-stacking configurations. The oxygen evolution reaction (OER) energy barriers are close to the theoretical minimum, at 1.44 eV and 1.48 eV, respectively. Nonadiabatic molecular dynamics (NAMD) simulations show extended electron and hole transfer times, highlighting the potential for efficient photocatalytic hydrogen and oxygen generation.These results suggest the GeC/SGaSnP Z-scheme heterojunction as a promising candidate for advancing photocatalytic water-splitting technologies, with strong catalytic performance and stability.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.