Enhancing Photocatalytic Water Splitting via GeC/SGaSnP Z-Scheme Heterojunctions with Built-in Electric Fields

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-12-30 DOI:10.1039/d4ta07893d
Lou Wenhua, Gang Liu, Xiaoguang Ma, Chuan-Lu Yang, Lixun Feng, Ying Liu, Xiaochun Gao
{"title":"Enhancing Photocatalytic Water Splitting via GeC/SGaSnP Z-Scheme Heterojunctions with Built-in Electric Fields","authors":"Lou Wenhua, Gang Liu, Xiaoguang Ma, Chuan-Lu Yang, Lixun Feng, Ying Liu, Xiaochun Gao","doi":"10.1039/d4ta07893d","DOIUrl":null,"url":null,"abstract":"Effective photocatalysts are essential for hydrogen production through water splitting. In this study, we predict a Z-scheme heterojunction composed of GeC and Janus SGaSnP monolayers. Binding energy analysis reveals that the heterojunction exhibit excellent thermodynamic stability, particularly in the B- and D-stacking configurations. The electronic structure of the heterojunction reveals strong charge separation and migration properties, driven by the built-in electric field and Janus monolayer polarization, effectively suppressing carrier recombination. Optical absorption and free energy calculations indicate strong visible light absorption, with low hydrogen evolution reaction (HER) free energy barriers of 0.23 eV for both B- and D-stacking configurations. The oxygen evolution reaction (OER) energy barriers are close to the theoretical minimum, at 1.44 eV and 1.48 eV, respectively. Nonadiabatic molecular dynamics (NAMD) simulations show extended electron and hole transfer times, highlighting the potential for efficient photocatalytic hydrogen and oxygen generation.These results suggest the GeC/SGaSnP Z-scheme heterojunction as a promising candidate for advancing photocatalytic water-splitting technologies, with strong catalytic performance and stability.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"0 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07893d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective photocatalysts are essential for hydrogen production through water splitting. In this study, we predict a Z-scheme heterojunction composed of GeC and Janus SGaSnP monolayers. Binding energy analysis reveals that the heterojunction exhibit excellent thermodynamic stability, particularly in the B- and D-stacking configurations. The electronic structure of the heterojunction reveals strong charge separation and migration properties, driven by the built-in electric field and Janus monolayer polarization, effectively suppressing carrier recombination. Optical absorption and free energy calculations indicate strong visible light absorption, with low hydrogen evolution reaction (HER) free energy barriers of 0.23 eV for both B- and D-stacking configurations. The oxygen evolution reaction (OER) energy barriers are close to the theoretical minimum, at 1.44 eV and 1.48 eV, respectively. Nonadiabatic molecular dynamics (NAMD) simulations show extended electron and hole transfer times, highlighting the potential for efficient photocatalytic hydrogen and oxygen generation.These results suggest the GeC/SGaSnP Z-scheme heterojunction as a promising candidate for advancing photocatalytic water-splitting technologies, with strong catalytic performance and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Correction: H2O assisted in improving the electrochemical performance of a deep eutectic electrolyte formed by choline chloride and magnesium chloride hexahydrate Synthesis of insensitive high-density energetic materials through molecular self-assembly Single-molecule quantification of photoredox activities and dynamics at the nanoscale on multi-faceted 2D materials Enhanced Piezo-Phototronic Effect in Carbon Nitride Nanosheets via Oxidative Exfoliation for High-Efficiency Piezo-Photocatalysis Electrocatalytic microdevices based on transition metal dichalcogenides for hydrogen evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1