Helena D Tjørnelund, Jesper Brask, John M Woodley, Günther H J Peters
{"title":"Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations.","authors":"Helena D Tjørnelund, Jesper Brask, John M Woodley, Günther H J Peters","doi":"10.1021/acs.jpcb.4c05738","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: <i>Candida antarctica</i> lipase B (CALB), <i>Rhizomucor miehei</i> lipase (RML), and <i>Thermomyces lanuginosus</i> lipase (TLL). The lipases were investigated in acetonitrile, methyl <i>tert</i>-butyl ether, and hexane with increasing water activity. Computational investigations reveal that CALB's activity is negatively correlated to water cluster formations on its surface. In contrast, TLL's and RML's activity profiles show no negative effects of high water activity. However, TLL's and RML's activities are highly correlated to the conformation and stability of their active site regions. This study may pave the way for tailored applications of lipases, highlighting some of the factors that should be considered when lipase-catalyzed reactions are designed.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05738","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: Candida antarctica lipase B (CALB), Rhizomucor miehei lipase (RML), and Thermomyces lanuginosus lipase (TLL). The lipases were investigated in acetonitrile, methyl tert-butyl ether, and hexane with increasing water activity. Computational investigations reveal that CALB's activity is negatively correlated to water cluster formations on its surface. In contrast, TLL's and RML's activity profiles show no negative effects of high water activity. However, TLL's and RML's activities are highly correlated to the conformation and stability of their active site regions. This study may pave the way for tailored applications of lipases, highlighting some of the factors that should be considered when lipase-catalyzed reactions are designed.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.