Amino-functionalized manganese oxide for effective hexavalent chromium adsorption.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2024-12-29 DOI:10.1007/s11356-024-35747-9
Yassine Slek, Amina Amarray, Mehdi Salmi, Meryem El Rharib, Zaina Zaroual, Sanae El Ghachtouli
{"title":"Amino-functionalized manganese oxide for effective hexavalent chromium adsorption.","authors":"Yassine Slek, Amina Amarray, Mehdi Salmi, Meryem El Rharib, Zaina Zaroual, Sanae El Ghachtouli","doi":"10.1007/s11356-024-35747-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of functionalized manganese oxide (K-MnO<sub>2</sub>-NH<sub>2</sub>) for the removal of hexavalent chromium (Cr(VI)) ions, a highly toxic heavy metal contaminant, from wastewater. The synthesis of K-MnO<sub>2</sub>-NH<sub>2</sub> was achieved through a two-step process, followed by comprehensive characterization using various analytical techniques, which confirmed the material's formation as a pure phase. The K-MnO<sub>2</sub>-NH<sub>2</sub> exhibited exceptional chromium removal efficiency, achieving up to 90% (4.53 mg/g) of Cr(VI) removal at pH 2. This high efficiency is attributed to the incorporation of amine groups via functionalization with 3-aminopropyltriethoxysilane (APTES), which introduces active sites with a strong affinity for Cr(VI) ions. Kinetics studies indicated that a chemical reaction governs the adsorption process, while thermodynamic data suggested it to be exothermic, and thermodynamic data reveal the process to be exothermic. The Freundlich isotherm best described the adsorption behavior. The Cr(VI) adsorption capacity of K-MnO<sub>2</sub>-NH<sub>2</sub> was determined to be 45.17 mg/g. K-MnO<sub>2</sub>-NH<sub>2</sub> effectively removed Cr(VI) from industrial wastewater, achieving a removal efficiency of around 41% (25.5 mg/g) and visible discoloration showing excellent reusability, maintaining over 80% removal efficiency after five cycles without requiring regeneration. This innovative approach highlights the potential of K-MnO<sub>2</sub>-NH<sub>2</sub> as a sustainable and effective solution for Cr(VI) removal in environmental remediation and water purification.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35747-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of functionalized manganese oxide (K-MnO2-NH2) for the removal of hexavalent chromium (Cr(VI)) ions, a highly toxic heavy metal contaminant, from wastewater. The synthesis of K-MnO2-NH2 was achieved through a two-step process, followed by comprehensive characterization using various analytical techniques, which confirmed the material's formation as a pure phase. The K-MnO2-NH2 exhibited exceptional chromium removal efficiency, achieving up to 90% (4.53 mg/g) of Cr(VI) removal at pH 2. This high efficiency is attributed to the incorporation of amine groups via functionalization with 3-aminopropyltriethoxysilane (APTES), which introduces active sites with a strong affinity for Cr(VI) ions. Kinetics studies indicated that a chemical reaction governs the adsorption process, while thermodynamic data suggested it to be exothermic, and thermodynamic data reveal the process to be exothermic. The Freundlich isotherm best described the adsorption behavior. The Cr(VI) adsorption capacity of K-MnO2-NH2 was determined to be 45.17 mg/g. K-MnO2-NH2 effectively removed Cr(VI) from industrial wastewater, achieving a removal efficiency of around 41% (25.5 mg/g) and visible discoloration showing excellent reusability, maintaining over 80% removal efficiency after five cycles without requiring regeneration. This innovative approach highlights the potential of K-MnO2-NH2 as a sustainable and effective solution for Cr(VI) removal in environmental remediation and water purification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. Geochemical signatures and contamination levels of rare earth elements in soil profiles controlled by parent rock and soil properties. Barriers to transition to resource-oriented sanitation in rural Ethiopia. Comprehensive screening and analysis of pharmaceuticals and pharmaceutically active chemicals in wastewater: health and environmental hazards and removal efficiency of wastewater treatment plant in Malaysia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1