Brain signaling becomes less integrated and more segregated with age.

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00389
Rostam M Razban, Botond B Antal, Ken A Dill, Lilianne R Mujica-Parodi
{"title":"Brain signaling becomes less integrated and more segregated with age.","authors":"Rostam M Razban, Botond B Antal, Ken A Dill, Lilianne R Mujica-Parodi","doi":"10.1162/netn_a_00389","DOIUrl":null,"url":null,"abstract":"<p><p>The integration-segregation framework is a popular first step to understand brain dynamics because it simplifies brain dynamics into two states based on global versus local signaling patterns. However, there is no consensus for how to best define the two states. Here, we map integration and segregation to order and disorder states from the Ising model in physics to calculate state probabilities, <i>P</i> <sub>int</sub> and <i>P</i> <sub>seg</sub>, from functional MRI data. We find that integration decreases and segregation increases with age across three databases. Changes are consistent with weakened connection strength among regions rather than topological connectivity based on structural and diffusion MRI data.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1051-1064"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The integration-segregation framework is a popular first step to understand brain dynamics because it simplifies brain dynamics into two states based on global versus local signaling patterns. However, there is no consensus for how to best define the two states. Here, we map integration and segregation to order and disorder states from the Ising model in physics to calculate state probabilities, P int and P seg, from functional MRI data. We find that integration decreases and segregation increases with age across three databases. Changes are consistent with weakened connection strength among regions rather than topological connectivity based on structural and diffusion MRI data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着年龄的增长,大脑信号变得越来越不整合,越来越分离。
整合-分离框架是理解大脑动力学的一个流行的第一步,因为它将大脑动力学简化为基于全局和局部信号模式的两种状态。然而,对于如何最好地定义这两种状态并没有达成共识。在这里,我们将整合和分离映射到物理中的Ising模型中的有序和无序状态,以从功能MRI数据中计算状态概率,P int和P seg。我们发现,在三个数据库中,随着年龄的增长,集成减少,隔离增加。这些变化与基于结构和扩散MRI数据的区域间连接强度减弱而不是拓扑连接相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1