{"title":"Predicting <i>BRAF</i> Mutations in Cutaneous Melanoma Patients Using Neural Network Analysis.","authors":"Oleksandr Dudin, Ozar Mintser, Vitalii Gurianov, Nazarii Kobyliak, Dmytro Kaminskyi, Alina Matvieieva, Roman Shabalkov, Artem Mashukov, Oksana Sulaieva","doi":"10.1155/jskc/3690228","DOIUrl":null,"url":null,"abstract":"<p><p>Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data. <b>Methods:</b> For identifying the key factors associated with point mutations in BRAF, 2041 patients with CM were recruited in the study. The presence of BRAF mutations was an endpoint. The variables included demographic data (gender and age), anatomic location, stage, histological subtype, number of mitosis, and also such features as ulceration, Clark level, Breslow thickness, infiltration by lymphocytes, invasiveness, regression, microsatellites, and association with nevi. <b>Results:</b> A relatively high rate of BRAF mutation was revealed in the Ukrainian cohort of patients with CM. BRAF-mutant melanoma was associated with younger age and location of nonsun-exposed skin. Besides, sex-specific differences were found between CM of various anatomic distributions and the frequency of distinct BRAF mutation subtypes. A minimal set of variables linked to BRAF mutations, defined by the genetic input selection algorithm, included patient age, primary tumor location, histological type, lymphovascular invasion, ulceration, and association with nevi. To encounter nonlinear links, neural network modeling was applied resulting in a multilayer perceptron (MLP) with one hidden layer. Its architecture included four neurons with a logistic activation function. The AUROCMLP6 of the MLP model comprised 0.79 (95% CІ: 0.74-0.84). Under the optimal threshold, the model demonstrated the following parameters: sensitivity: 89.4% (95% CІ: 84.5%-93.1%), specificity: 50.7% (95% CІ: 42.2%-59.1%), positive predictive value: 73.1% (95% CІ: 69.6%-76.3%), and negative predictive value: 76.0% (95% CІ: 67.6%-82.8%). The developed MLP model enables the prediction of the mutation in BRAF oncogene in CM, alleviating decisions on personalized management of patients with CM. In conclusion, the developed MLP model, which relies on the assessment of 6 variables, can predict the <i>BRAF</i> mutation status in patients with CM, supporting decisions on patient management.</p>","PeriodicalId":17172,"journal":{"name":"Journal of Skin Cancer","volume":"2024 ","pages":"3690228"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Skin Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/jskc/3690228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Point mutations at codon 600 of the BRAF oncogene are the most common alterations in cutaneous melanoma (CM). Assessment of BRAF status allows to personalize patient management, though the affordability of molecular testing is limited in some countries. This study aimed to develop a model for predicting alteration in BRAF based on routinely available clinical and histological data. Methods: For identifying the key factors associated with point mutations in BRAF, 2041 patients with CM were recruited in the study. The presence of BRAF mutations was an endpoint. The variables included demographic data (gender and age), anatomic location, stage, histological subtype, number of mitosis, and also such features as ulceration, Clark level, Breslow thickness, infiltration by lymphocytes, invasiveness, regression, microsatellites, and association with nevi. Results: A relatively high rate of BRAF mutation was revealed in the Ukrainian cohort of patients with CM. BRAF-mutant melanoma was associated with younger age and location of nonsun-exposed skin. Besides, sex-specific differences were found between CM of various anatomic distributions and the frequency of distinct BRAF mutation subtypes. A minimal set of variables linked to BRAF mutations, defined by the genetic input selection algorithm, included patient age, primary tumor location, histological type, lymphovascular invasion, ulceration, and association with nevi. To encounter nonlinear links, neural network modeling was applied resulting in a multilayer perceptron (MLP) with one hidden layer. Its architecture included four neurons with a logistic activation function. The AUROCMLP6 of the MLP model comprised 0.79 (95% CІ: 0.74-0.84). Under the optimal threshold, the model demonstrated the following parameters: sensitivity: 89.4% (95% CІ: 84.5%-93.1%), specificity: 50.7% (95% CІ: 42.2%-59.1%), positive predictive value: 73.1% (95% CІ: 69.6%-76.3%), and negative predictive value: 76.0% (95% CІ: 67.6%-82.8%). The developed MLP model enables the prediction of the mutation in BRAF oncogene in CM, alleviating decisions on personalized management of patients with CM. In conclusion, the developed MLP model, which relies on the assessment of 6 variables, can predict the BRAF mutation status in patients with CM, supporting decisions on patient management.
期刊介绍:
Journal of Skin Cancer is a peer-reviewed, Open Access journal that publishes clinical and translational research on the detection, diagnosis, prevention, and treatment of skin malignancies. The journal encourages the submission of original research articles, review articles, and clinical studies related to pathology, prognostic indicators and biomarkers, novel therapies, as well as drug sensitivity and resistance.