Angiotensin (1-7) Improves Pancreatic Islet Function via Upregulating PDX-1 and GCK: A Dose-Dependent Study in Mice.

IF 2.3 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM International Journal of Endocrinology Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.1155/ije/1672096
Ziwei Lin, Jiaqi Lin, Anqi Huang, Zixu Zhang, Xinyi Wu, Guoshu Yin, Chiju Wei, Wencan Xu
{"title":"Angiotensin (1-7) Improves Pancreatic Islet Function via Upregulating PDX-1 and GCK: A Dose-Dependent Study in Mice.","authors":"Ziwei Lin, Jiaqi Lin, Anqi Huang, Zixu Zhang, Xinyi Wu, Guoshu Yin, Chiju Wei, Wencan Xu","doi":"10.1155/ije/1672096","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> This study aimed to verify the effect of angiotensin (1-7) on improving islet function and further explore the signaling pathway that may be involved in this improvement. It also aimed to explore the effects of angiotensin (1-7) on blood glucose levels, islet function, and morphological changes in db/db mice and its potential signal pathway. <b>Methods:</b> Forty-five db/db mice were divided randomly into a model control group and different doses of angiotensin (1-7) intervention groups (0, 150, 300, and 600 <i>μ</i>g/kg/d), while seven db/m mice were assigned as the normal control group. The angiotensin (1-7) intervention groups received daily intraperitoneal administration for 8 weeks, whereas the normal control group was injected intraperitoneally with an equal volume of normal saline every day for 8 weeks. Changes in weight and food intake of mice were detected. Effect of angiotensin (1-7) on lipid metabolism, islet function, the morphology of pancreatic islets, and <i>β</i>-cell mass on mice were evaluated. The expression of PDX-1 and GCK in pancreatic tissue was verified. <b>Results:</b> The group receiving angiotensin (1-7) at a dosage of 600 <i>μ</i>g/kg/d showed a significant decrease in body weight, triglyceride levels, and fasting blood glucose, along with an improvement in glucose tolerance. In the 300 <i>μ</i>g/kg/d group, angiotensin (1-7) tended to increase the total volume of islets. Moreover, the intervention groups exhibited a significant increase in the ratio of <i>β</i> cells, small islets (30-80 <i>μ</i>m in diameter), as well as the expression levels of PDX-1 and GCK in pancreatic tissue. <b>Conclusion:</b> Angiotensin (1-7) could improve glucose and lipid metabolism and islet function by promoting the expression of PDX-1 and GCK genes in the pancreas of db/db mice.</p>","PeriodicalId":13966,"journal":{"name":"International Journal of Endocrinology","volume":"2024 ","pages":"1672096"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/ije/1672096","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to verify the effect of angiotensin (1-7) on improving islet function and further explore the signaling pathway that may be involved in this improvement. It also aimed to explore the effects of angiotensin (1-7) on blood glucose levels, islet function, and morphological changes in db/db mice and its potential signal pathway. Methods: Forty-five db/db mice were divided randomly into a model control group and different doses of angiotensin (1-7) intervention groups (0, 150, 300, and 600 μg/kg/d), while seven db/m mice were assigned as the normal control group. The angiotensin (1-7) intervention groups received daily intraperitoneal administration for 8 weeks, whereas the normal control group was injected intraperitoneally with an equal volume of normal saline every day for 8 weeks. Changes in weight and food intake of mice were detected. Effect of angiotensin (1-7) on lipid metabolism, islet function, the morphology of pancreatic islets, and β-cell mass on mice were evaluated. The expression of PDX-1 and GCK in pancreatic tissue was verified. Results: The group receiving angiotensin (1-7) at a dosage of 600 μg/kg/d showed a significant decrease in body weight, triglyceride levels, and fasting blood glucose, along with an improvement in glucose tolerance. In the 300 μg/kg/d group, angiotensin (1-7) tended to increase the total volume of islets. Moreover, the intervention groups exhibited a significant increase in the ratio of β cells, small islets (30-80 μm in diameter), as well as the expression levels of PDX-1 and GCK in pancreatic tissue. Conclusion: Angiotensin (1-7) could improve glucose and lipid metabolism and islet function by promoting the expression of PDX-1 and GCK genes in the pancreas of db/db mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Endocrinology
International Journal of Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
5.20
自引率
0.00%
发文量
147
审稿时长
1 months
期刊介绍: International Journal of Endocrinology is a peer-reviewed, Open Access journal that provides a forum for scientists and clinicians working in basic and translational research. The journal publishes original research articles, review articles, and clinical studies that provide insights into the endocrine system and its associated diseases at a genomic, molecular, biochemical and cellular level.
期刊最新文献
Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Angiotensin (1-7) Improves Pancreatic Islet Function via Upregulating PDX-1 and GCK: A Dose-Dependent Study in Mice. The Association Between Serum Uric Acid Levels and the Risk of Cognitive Dysfunction in Patients With Atrial Fibrillation. Efficacy of Local N-Acetylcysteine Administration in Mitigating OHSS Parameters: A Comparative Analysis With Dopaminergic Agonist in the OHSS Model. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1