{"title":"Innovative hydrogel delivery of bone marrow stromal cell-derived exosomes for enhanced bone healing.","authors":"Yue Ding, Fang Lin, Xiao-Ting Liang","doi":"10.4252/wjsc.v16.i12.1106","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is a multifaceted process involving the well-coordinated interaction of cellular functions such as the regulation of inflammation, the formation of new blood vessels, and the development of bone tissue. Bone regeneration is a multifaceted process involving the well-coordinated interplay of multiple cellular activities, such as inflammation control, blood vessel and bone tissue. Zhang <i>et al</i> developed a multifunctional hydrogel system embedded with bone marrow stromal cell-derived exosomes to address the challenges of large bone defects. This innovative approach demonstrated the dual-role capability of bone marrow stromal cell-derived exosomes in directing cell fate by significantly enhancing both angiogenesis and osteogenic differentiation <i>in vitro</i>. The hydrogel system effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, fostering an environment that supports bone repair. The effectiveness of this hydrogel was validated in a murine fracture model, which promoted significant bone regeneration and functional vascularization. Despite compelling evidence, this study highlights areas for further investigation, including detailed descriptions of experimental procedures, control group selection, long-term outcomes, and the evaluation of inflammation status <i>in vivo</i>. Addressing these limitations will enhance the robustness and impact of the findings.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"16 12","pages":"1106-1109"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v16.i12.1106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Bone regeneration is a multifaceted process involving the well-coordinated interaction of cellular functions such as the regulation of inflammation, the formation of new blood vessels, and the development of bone tissue. Bone regeneration is a multifaceted process involving the well-coordinated interplay of multiple cellular activities, such as inflammation control, blood vessel and bone tissue. Zhang et al developed a multifunctional hydrogel system embedded with bone marrow stromal cell-derived exosomes to address the challenges of large bone defects. This innovative approach demonstrated the dual-role capability of bone marrow stromal cell-derived exosomes in directing cell fate by significantly enhancing both angiogenesis and osteogenic differentiation in vitro. The hydrogel system effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, fostering an environment that supports bone repair. The effectiveness of this hydrogel was validated in a murine fracture model, which promoted significant bone regeneration and functional vascularization. Despite compelling evidence, this study highlights areas for further investigation, including detailed descriptions of experimental procedures, control group selection, long-term outcomes, and the evaluation of inflammation status in vivo. Addressing these limitations will enhance the robustness and impact of the findings.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.