{"title":"Identification of Novel Potential Herbal Drug Targets against Beta-Catenin in the Treatment of Oral Squamous Cell Carcinoma.","authors":"Priyadarshini R, Abilasha Ramasubramanian, Pratibha Ramani, Mukesh Doble","doi":"10.31557/APJCP.2024.25.12.4181","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aims to identify potential pharmacophore models for targeting beta-catenin, a crucial protein involved in the development of oral squamous cell carcinoma (OSCC), using a combination of herbal compounds and computational approaches.</p><p><strong>Methods: </strong>Five natural compounds namely Quercetin, Lycopene, Ovatodiolide, Karsil, and Delphinidin were selected based on their reported activity against beta-catenin. Ligand characteristics were analyzed using SwissADME to evaluate drug-likeness, lipophilicity (logP), and bioavailability. The three-dimensional structure of beta-catenin was retrieved from the Protein Data Bank (PDB). Pharmacophore modeling was performed using Pharmagist software, followed by molecular docking using Swissdock to assess binding interactions and energies.</p><p><strong>Results: </strong>Out of thousands of pharmacophore hits generated, 23 were selected based on drug-likeness properties. Molecular docking revealed that ZINC94512303, derived from the combination of the selected herbal compounds, exhibited the highest binding energy of -8.91 kcal/mol with beta-catenin, outperforming individual herbal compounds. This compound adhered to all drug-likeness rules and demonstrated optimal pharmacokinetic properties.</p><p><strong>Conclusion: </strong>The identified pharmacophore, ZINC94512303, shows promise as a therapeutic agent targeting beta-catenin in OSCC. The combination of computational drug design with herbal compounds offers a novel approach to enhance the efficacy of cancer treatment. Further pharmacokinetic and pharmacodynamic studies, along with in vitro and clinical evaluations, are recommended to validate the therapeutic potential of this compound.</p>","PeriodicalId":55451,"journal":{"name":"Asian Pacific Journal of Cancer Prevention","volume":"25 12","pages":"4181-4188"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific Journal of Cancer Prevention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31557/APJCP.2024.25.12.4181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The study aims to identify potential pharmacophore models for targeting beta-catenin, a crucial protein involved in the development of oral squamous cell carcinoma (OSCC), using a combination of herbal compounds and computational approaches.
Methods: Five natural compounds namely Quercetin, Lycopene, Ovatodiolide, Karsil, and Delphinidin were selected based on their reported activity against beta-catenin. Ligand characteristics were analyzed using SwissADME to evaluate drug-likeness, lipophilicity (logP), and bioavailability. The three-dimensional structure of beta-catenin was retrieved from the Protein Data Bank (PDB). Pharmacophore modeling was performed using Pharmagist software, followed by molecular docking using Swissdock to assess binding interactions and energies.
Results: Out of thousands of pharmacophore hits generated, 23 were selected based on drug-likeness properties. Molecular docking revealed that ZINC94512303, derived from the combination of the selected herbal compounds, exhibited the highest binding energy of -8.91 kcal/mol with beta-catenin, outperforming individual herbal compounds. This compound adhered to all drug-likeness rules and demonstrated optimal pharmacokinetic properties.
Conclusion: The identified pharmacophore, ZINC94512303, shows promise as a therapeutic agent targeting beta-catenin in OSCC. The combination of computational drug design with herbal compounds offers a novel approach to enhance the efficacy of cancer treatment. Further pharmacokinetic and pharmacodynamic studies, along with in vitro and clinical evaluations, are recommended to validate the therapeutic potential of this compound.
期刊介绍:
Cancer is a very complex disease. While many aspects of carcinoge-nesis and oncogenesis are known, cancer control and prevention at the community level is however still in its infancy. Much more work needs to be done and many more steps need to be taken before effective strategies are developed. The multidisciplinary approaches and efforts to understand and control cancer in an effective and efficient manner, require highly trained scientists in all branches of the cancer sciences, from cellular and molecular aspects to patient care and palliation.
The Asia Pacific Organization for Cancer Prevention (APOCP) and its official publication, the Asia Pacific Journal of Cancer Prevention (APJCP), have served the community of cancer scientists very well and intends to continue to serve in this capacity to the best of its abilities. One of the objectives of the APOCP is to provide all relevant and current scientific information on the whole spectrum of cancer sciences. They aim to do this by providing a forum for communication and propagation of original and innovative research findings that have relevance to understanding the etiology, progression, treatment, and survival of patients, through their journal. The APJCP with its distinguished, diverse, and Asia-wide team of editors, reviewers, and readers, ensure the highest standards of research communication within the cancer sciences community across Asia as well as globally.
The APJCP publishes original research results under the following categories:
-Epidemiology, detection and screening.
-Cellular research and bio-markers.
-Identification of bio-targets and agents with novel mechanisms of action.
-Optimal clinical use of existing anti-cancer agents, including combination therapies.
-Radiation and surgery.
-Palliative care.
-Patient adherence, quality of life, satisfaction.
-Health economic evaluations.