Chemoenzymatic synthesis with the Pasteurella hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers.

Proteoglycan research Pub Date : 2024-10-01 Epub Date: 2024-10-06 DOI:10.1002/pgr2.70000
Paul L DeAngelis
{"title":"Chemoenzymatic synthesis with the <i>Pasteurella</i> hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers.","authors":"Paul L DeAngelis","doi":"10.1002/pgr2.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] <i><sub>n</sub></i> ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by \"HA synthase\" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from <i>Pasteurella multocida</i> Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or \"primer\") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (<i>n</i> = 1 to ~10), or (2) \"one-pot\" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (<i>n</i> = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.</p>","PeriodicalId":74585,"journal":{"name":"Proteoglycan research","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteoglycan research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pgr2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] n ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Pasteurella multocida Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (n = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (n = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴氏杆菌透明质酸合成酶的化学酶合成生产大量的定义真实的,衍生的,和模拟聚合物。
透明质酸(HA;[-3-GlcNAc-1-beta-4-GlcA-1-beta] n)是脊椎动物的一种重要基质多糖,也是某些病原体的分子伪装涂层,由 "HA 合成酶"(HAS)聚合而成。目前已发现三类具有生物技术用途的 HAS,但只有来自 A 型多杀性巴氏杆菌的第二类 PmHAS 可用于在体外制备非常明确的 HA 聚合物。有两种具有不同大小产物的一般化学酶促策略:(1) 通过将供体 UDP-糖中的单糖顺序添加到由短糖胺聚糖链组成的受体(或 "引物")上,进行重复的分步延伸反应(例如,HA 二聚体、三聚体或四聚体)、HA二糖、三糖或四糖)或人工葡萄糖醛酸,生成 2 至 ~20 个单糖单位(n = 1 至 ~10)的均质寡糖,或 (2) 采用受体介导的同步化 "单锅 "聚合反应,并进行化学计量尺寸控制,生成准单分散(即多分散度接近 1)的寡糖、多分散性接近 1;尺寸分布非常窄)的多糖,其范围在 ~7 kDa 到 ~2 MDa 之间(n = ~17 到 5000)。无论采用哪种策略,含有非碳水化合物功能的受体(如生物素、荧光团、胺)都能以 100% 的效率将有用的分子添加到 HA 链的还原端。作为结构的进一步多样化,PmHAS 可以利用各种非天然的 UDP 糖类似物,从而在 HA 骨架和/或非还原末端添加新的基团(如三氟乙酰基、炔基、叠氮基、巯基)。本综述讨论了目前对使用 PmHAS 的 HA 化学合成方法的理解和最新进展。这个功能强大的工具箱有望创造出多种基于 HA 的探针、治疗剂、药物共轭物、涂层和生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utility of Authentic 13C-Labeled Disaccharide to Calibrate Hyaluronan Content Measurements by LC-MS. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. Injury From Nematode Lung Migration Induces an IL-13-Dependent Hyaluronan Matrix. High-fidelity and iterative affinity extraction of hyaluronan. Chondroitin sulfate in invertebrate development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1