SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis.

Health Care Science Pub Date : 2024-11-28 eCollection Date: 2024-12-01 DOI:10.1002/hcs2.121
Geetika Munjal, Paarth Bhardwaj, Vaibhav Bhargava, Shivendra Singh, Nimish Nagpal
{"title":"SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis.","authors":"Geetika Munjal, Paarth Bhardwaj, Vaibhav Bhargava, Shivendra Singh, Nimish Nagpal","doi":"10.1002/hcs2.121","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.</p><p><strong>Methods: </strong>To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.</p><p><strong>Results: </strong>SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions-dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, <i>f</i> <sub>1</sub> score at 96.14%, and an area under the curve of 99.83%.</p><p><strong>Conclusions: </strong>SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.</p>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 6","pages":"438-455"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/hcs2.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Skin cancer poses a significant global health threat, with early detection being essential for successful treatment. While deep learning algorithms have greatly enhanced the categorization of skin lesions, the black-box nature of many models limits interpretability, posing challenges for dermatologists.

Methods: To address these limitations, SkinSage XAI utilizes advanced explainable artificial intelligence (XAI) techniques for skin lesion categorization. A data set of around 50,000 images from the Customized HAM10000, selected for diversity, serves as the foundation. The Inception v3 model is used for classification, supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms, which provide clear visual explanations for model outputs.

Results: SkinSage XAI demonstrated high performance, accurately categorizing seven types of skin lesions-dermatofibroma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, basal cell carcinoma, and melanoma. It achieved an accuracy of 96%, with precision at 96.42%, recall at 96.28%, f 1 score at 96.14%, and an area under the curve of 99.83%.

Conclusions: SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability. The system provides transparent, accurate diagnoses, improving decision-making for dermatologists and potentially enhancing patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
skinage XAI:一个可解释的皮肤病变诊断深度学习解决方案。
背景:皮肤癌对全球健康构成重大威胁,早期发现对成功治疗至关重要。虽然深度学习算法大大增强了皮肤病变的分类,但许多模型的黑箱性质限制了可解释性,给皮肤科医生带来了挑战。方法:为了解决这些局限性,SkinSage XAI利用先进的可解释人工智能(XAI)技术对皮肤病变进行分类。从定制的HAM10000中选择了大约5万张图像作为基础。Inception v3模型用于分类,由梯度加权类激活映射和局部可解释的模型无关解释算法支持,这些算法为模型输出提供了清晰的可视化解释。结果:SkinSage XAI表现出高性能,准确地分类了7种皮肤病变:皮肤纤维瘤、良性角化病、黑素细胞痣、血管病变、光化性角化病、基底细胞癌和黑色素瘤。准确率为96%,精密度为96.42%,召回率为96.28%,f1分数为96.14%,曲线下面积为99.83%。结论:SkinSage XAI通过弥合准确性和可解释性方面的差距,代表了皮肤病学和人工智能的重大进步。该系统提供透明、准确的诊断,改善皮肤科医生的决策,并有可能提高患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Study protocol: A national cross-sectional study on psychology and behavior investigation of Chinese residents in 2023. Caregiving in Asia: Priority areas for research, policy, and practice to support family caregivers. Innovative public strategies in response to COVID-19: A review of practices from China. Sixty years of ethical evolution: The 2024 revision of the Declaration of Helsinki (DoH). A novel ensemble ARIMA-LSTM approach for evaluating COVID-19 cases and future outbreak preparedness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1