Chenlin Du, Zeyu Zhang, Baoqin Liu, Zijian Cao, Nan Jiang, Zongjiu Zhang
{"title":"Explainable machine learning model for pre-frailty risk assessment in community-dwelling older adults.","authors":"Chenlin Du, Zeyu Zhang, Baoqin Liu, Zijian Cao, Nan Jiang, Zongjiu Zhang","doi":"10.1002/hcs2.120","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Frailty in older adults is linked to increased risks and lower quality of life. Pre-frailty, a condition preceding frailty, is intervenable, but its determinants and assessment are challenging. This study aims to develop and validate an explainable machine learning model for pre-frailty risk assessment among community-dwelling older adults.</p><p><strong>Methods: </strong>The study included 3141 adults aged 60 or above from the China Health and Retirement Longitudinal Study. Pre-frailty was characterized by one or two criteria from the physical frailty phenotype scale. We extracted 80 distinct features across seven dimensions to evaluate pre-frailty risk. A model was constructed using recursive feature elimination and a stacking-CatBoost distillation module on 80% of the sample and validated on a separate 20% holdout data set.</p><p><strong>Results: </strong>The study used data from 2508 community-dwelling older adults (mean age, 67.24 years [range, 60-96]; 1215 [48.44%] females) to develop a pre-frailty risk assessment model. We selected 57 predictive features and built a distilled CatBoost model, which achieved the highest discrimination (AUROC: 0.7560 [95% CI: 0.7169, 0.7928]) on the 20% holdout data set. The living city, BMI, and peak expiratory flow (PEF) were the three most significant contributors to pre-frailty risk. Physical and environmental factors were the top 2 impactful feature dimensions.</p><p><strong>Conclusions: </strong>An accurate and interpretable pre-frailty risk assessment framework using state-of-the-art machine learning techniques and explanation methods has been developed. Our framework incorporates a wide range of features and determinants, allowing for a comprehensive and nuanced understanding of pre-frailty risk.</p>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 6","pages":"426-437"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/hcs2.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Frailty in older adults is linked to increased risks and lower quality of life. Pre-frailty, a condition preceding frailty, is intervenable, but its determinants and assessment are challenging. This study aims to develop and validate an explainable machine learning model for pre-frailty risk assessment among community-dwelling older adults.
Methods: The study included 3141 adults aged 60 or above from the China Health and Retirement Longitudinal Study. Pre-frailty was characterized by one or two criteria from the physical frailty phenotype scale. We extracted 80 distinct features across seven dimensions to evaluate pre-frailty risk. A model was constructed using recursive feature elimination and a stacking-CatBoost distillation module on 80% of the sample and validated on a separate 20% holdout data set.
Results: The study used data from 2508 community-dwelling older adults (mean age, 67.24 years [range, 60-96]; 1215 [48.44%] females) to develop a pre-frailty risk assessment model. We selected 57 predictive features and built a distilled CatBoost model, which achieved the highest discrimination (AUROC: 0.7560 [95% CI: 0.7169, 0.7928]) on the 20% holdout data set. The living city, BMI, and peak expiratory flow (PEF) were the three most significant contributors to pre-frailty risk. Physical and environmental factors were the top 2 impactful feature dimensions.
Conclusions: An accurate and interpretable pre-frailty risk assessment framework using state-of-the-art machine learning techniques and explanation methods has been developed. Our framework incorporates a wide range of features and determinants, allowing for a comprehensive and nuanced understanding of pre-frailty risk.