{"title":"On boundary value problem of the nonlinear fractional partial integro-differential equation via inverse operators","authors":"Chenkuan Li","doi":"10.1007/s13540-024-00365-2","DOIUrl":null,"url":null,"abstract":"<p>This paper is to obtain sufficient conditions for the uniqueness and existence of solutions to a new nonlinear fractional partial integro-differential equation with boundary conditions. Our analysis relies on an equivalent implicit integral equation in series obtained from an inverse operator, the multivariate Mittag-Leffler function, Leray-Schauder’s fixed point theorem as well as Banach’s contractive principle. Several illustrative examples are also presented to show applications of the key results derived. Finally, we consider the generalized fractional wave equation in <span>\\({\\mathbb {R}}^n\\)</span> and deduce the analytic solution for the first time based on the inverse operator method, which leads us a fresh approach to studying some well-known partial differential equations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00365-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is to obtain sufficient conditions for the uniqueness and existence of solutions to a new nonlinear fractional partial integro-differential equation with boundary conditions. Our analysis relies on an equivalent implicit integral equation in series obtained from an inverse operator, the multivariate Mittag-Leffler function, Leray-Schauder’s fixed point theorem as well as Banach’s contractive principle. Several illustrative examples are also presented to show applications of the key results derived. Finally, we consider the generalized fractional wave equation in \({\mathbb {R}}^n\) and deduce the analytic solution for the first time based on the inverse operator method, which leads us a fresh approach to studying some well-known partial differential equations.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.