E. Spanswick, J. Liang, J. Houghton, D. Chaddock, E. Donovan, B. Gallardo-Lacourt, C. Keenan, J. Rosehart, Y. Nishimura, D. Hampton, M. Gillies
{"title":"Association of structured continuum emission with dynamic aurora","authors":"E. Spanswick, J. Liang, J. Houghton, D. Chaddock, E. Donovan, B. Gallardo-Lacourt, C. Keenan, J. Rosehart, Y. Nishimura, D. Hampton, M. Gillies","doi":"10.1038/s41467-024-55081-5","DOIUrl":null,"url":null,"abstract":"<p>Patterns of ionospheric luminosity provide a unique window into our complex, coupled space environment. The aurora, for example, indicates plasma processes occurring thousands of km away, depositing immense amounts of energy into our polar ionospheres. Here we show observations of structured continuum emission associated with the dynamic aurora. The presence of weak ambient continuum emission has long been recognized. However, studies of its relationship to aurora are scarce and limited by observational constraints. We use spectrally resolved measurements to analyze these previously unexplained emissions, adding critical information about spatial structure, characteristic spectra, and location within auroral dynamics. Our findings demonstrate that the coupling among auroral processes, the plasma, and the neutral atmosphere can unfold at meso-scales and is more complex than previously reported. We suggest that the meso-scale auroral precipitation may, under certain circumstances, effectively couple to atmospheric chemistry and conditions to produce the continuum structure.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"67 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55081-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Patterns of ionospheric luminosity provide a unique window into our complex, coupled space environment. The aurora, for example, indicates plasma processes occurring thousands of km away, depositing immense amounts of energy into our polar ionospheres. Here we show observations of structured continuum emission associated with the dynamic aurora. The presence of weak ambient continuum emission has long been recognized. However, studies of its relationship to aurora are scarce and limited by observational constraints. We use spectrally resolved measurements to analyze these previously unexplained emissions, adding critical information about spatial structure, characteristic spectra, and location within auroral dynamics. Our findings demonstrate that the coupling among auroral processes, the plasma, and the neutral atmosphere can unfold at meso-scales and is more complex than previously reported. We suggest that the meso-scale auroral precipitation may, under certain circumstances, effectively couple to atmospheric chemistry and conditions to produce the continuum structure.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.