DNA end sensing and cleavage by the Shedu anti-phage defense system

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-12-31 DOI:10.1016/j.cell.2024.11.030
Luuk Loeff, Alexander Walter, Gian Tizio Rosalen, Martin Jinek
{"title":"DNA end sensing and cleavage by the Shedu anti-phage defense system","authors":"Luuk Loeff, Alexander Walter, Gian Tizio Rosalen, Martin Jinek","doi":"10.1016/j.cell.2024.11.030","DOIUrl":null,"url":null,"abstract":"The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA. Here, we report cryoelectron microscopy (cryo-EM) structures of apo- and double-stranded DNA (dsDNA)-bound tetrameric SduA assemblies, revealing that the N-terminal domains of SduA form a clamp that recognizes free DNA ends. End binding positions the DNA over the PD-(D/E)XK nuclease domain, resulting in dsDNA nicking at a fixed distance from the 5′ end. The end-directed DNA nicking activity of Shedu prevents propagation of linear DNA <em>in vivo</em>. Finally, we show that phages escape Shedu immunity by suppressing their recombination-dependent DNA replication pathway. Taken together, these results define the antiviral mechanism of Shedu systems, underlining the paradigm that recognition of pathogen-specific nucleic acid structures is a conserved feature of innate immunity across all domains of life.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"147 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA. Here, we report cryoelectron microscopy (cryo-EM) structures of apo- and double-stranded DNA (dsDNA)-bound tetrameric SduA assemblies, revealing that the N-terminal domains of SduA form a clamp that recognizes free DNA ends. End binding positions the DNA over the PD-(D/E)XK nuclease domain, resulting in dsDNA nicking at a fixed distance from the 5′ end. The end-directed DNA nicking activity of Shedu prevents propagation of linear DNA in vivo. Finally, we show that phages escape Shedu immunity by suppressing their recombination-dependent DNA replication pathway. Taken together, these results define the antiviral mechanism of Shedu systems, underlining the paradigm that recognition of pathogen-specific nucleic acid structures is a conserved feature of innate immunity across all domains of life.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛇毒抗噬菌体防御系统对DNA末端的传感和切割
检测与入侵病原体相关的分子模式是先天免疫系统的一个标志。原核生物在先天抗噬菌体免疫中部署复杂的宿主防御机制。Shedu是一种单组分防御系统,由假定的核酸酶SduA组成。在这里,我们报道了载子和双链DNA (dsDNA)结合的四聚体SduA组装的冷冻电镜(cryo-EM)结构,揭示了SduA的n端结构域形成一个识别自由DNA末端的钳形结构。末端结合将DNA定位在PD-(D/E)XK核酸酶结构域上,导致dsDNA在距离5 '端固定距离处划痕。蛇毒的末端定向DNA缺口活性阻止了线性DNA在体内的繁殖。最后,我们发现噬菌体通过抑制重组依赖的DNA复制途径来逃避Shedu免疫。综上所述,这些结果确定了Shedu系统的抗病毒机制,强调了识别病原体特异性核酸结构是所有生命领域先天免疫的保守特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Identification, structure, and agonist design of an androgen membrane receptor Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3 Ligand interaction landscape of transcription factors and essential enzymes in E. coli Comparative proteomic landscapes elucidate human preimplantation development and failure High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1