Characterization of an Unexpected μ3 Adsorption of Molecular Oxygen on Ag(100) with Low-Temperature STM

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-12-31 DOI:10.1021/acs.jpcc.4c06572
Merve Ercelik, Andrés Pinar Solé, Liang Zhang, Piotr Kot, Jinkyung Kim, Jungseok Chae, Lukas E. Spree, Hua Guo, Andreas J. Heinrich, Yujeong Bae, Dmitriy Borodin
{"title":"Characterization of an Unexpected μ3 Adsorption of Molecular Oxygen on Ag(100) with Low-Temperature STM","authors":"Merve Ercelik, Andrés Pinar Solé, Liang Zhang, Piotr Kot, Jinkyung Kim, Jungseok Chae, Lukas E. Spree, Hua Guo, Andreas J. Heinrich, Yujeong Bae, Dmitriy Borodin","doi":"10.1021/acs.jpcc.4c06572","DOIUrl":null,"url":null,"abstract":"Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ<sub>3</sub>) on Ag(100). Surprisingly, μ<sub>3</sub>-O<sub>2</sub> cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations. Through inelastic electron tunneling spectroscopy (IETS), we identify three vibrational modes of individual μ<sub>3</sub>-O<sub>2</sub> and assign them to out-of-plane hindered rotation (HR) at 38.0 meV, in-plane HR at 32.4 meV, and in-plane hindered translation (HT) at 22.0 meV. We determine the barrier for rotational isomerization of μ<sub>3</sub>-O<sub>2</sub> to be 69.3 meV from tunneling electrons-induced rotations. The inability of theory to predict the experiment stems most likely from self-interaction errors inherent to GGA-DFT, which leads to an inaccurate description of localized charges. We speculate that the μ<sub>3</sub>-O<sub>2</sub> configuration represents a formal molecular oxygen anion and assign the ±11 meV excitation in the IETS to a transition between spin–orbit states of the surface-bound anion.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"134 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06572","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ3) on Ag(100). Surprisingly, μ3-O2 cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations. Through inelastic electron tunneling spectroscopy (IETS), we identify three vibrational modes of individual μ3-O2 and assign them to out-of-plane hindered rotation (HR) at 38.0 meV, in-plane HR at 32.4 meV, and in-plane hindered translation (HT) at 22.0 meV. We determine the barrier for rotational isomerization of μ3-O2 to be 69.3 meV from tunneling electrons-induced rotations. The inability of theory to predict the experiment stems most likely from self-interaction errors inherent to GGA-DFT, which leads to an inaccurate description of localized charges. We speculate that the μ3-O2 configuration represents a formal molecular oxygen anion and assign the ±11 meV excitation in the IETS to a transition between spin–orbit states of the surface-bound anion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ag(100)上μ3吸附分子氧的低温STM表征
分子氧与金属表面相互作用的精确描述是量子化学中最具挑战性的课题之一。在这项工作中,我们使用低温扫描隧道显微镜(STM)鉴定和表征了分子氧在Ag(100)上与三个Ag原子(μ3)的吸附状态。令人惊讶的是,μ3-O2不能被广义梯度近似(GGA)级密度泛函理论(DFT)识别为稳定构型。通过非弹性电子隧道能谱(IETS),我们确定了单个μ3-O2的三种振动模式,并将它们划分为38.0 meV的面外受阻旋转(HR)、32.4 meV的面内受阻旋转(HR)和22.0 meV的面内受阻平移(HT)。我们确定了μ3-O2在隧穿电子诱导下的旋转异构化势垒为69.3 meV。理论无法预测实验很可能源于GGA-DFT固有的自相互作用误差,这导致了对局域电荷的不准确描述。我们推测μ3-O2的构型代表了一个正式的分子氧阴离子,并将其在IETS中的±11 meV激发归因于表面结合阴离子的自旋轨道态之间的跃迁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Oxidative Ring-Opening of Dimethylfuran in Zeolitic Imidazolate Frameworks through Computational Design Emerging Potential of Eu2O2SO4 in Reversible Oxygen Storage: A Comparative Study with Pr2O2SO4 Interface Engineering of a Zeolite-MOF Core–Shell Catalyst for Dynamic Acid-Site Switching and Enhanced Catalytic Selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1