Regulating Stereomicrostructure, Circularity and Functionality of Synthetic PHAs

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2024-12-31 DOI:10.1039/d4py01313a
Ethan C Quinn, Celine Parker, Sophie M Guillaume, Eugene Y.-X. Chen
{"title":"Regulating Stereomicrostructure, Circularity and Functionality of Synthetic PHAs","authors":"Ethan C Quinn, Celine Parker, Sophie M Guillaume, Eugene Y.-X. Chen","doi":"10.1039/d4py01313a","DOIUrl":null,"url":null,"abstract":"Biodegradable plastics, especially those that can biodegrade in uncontrolled enviroments, are of importance to help curb the global plastics crisis. Poly(3-hydroxyalkanoate)s (PHAs), which can be either microbially or chemically synthesized, are one of the rare classes of plastics that can biodegrade under both managed and unmanaged conditions. Besides this exceptional upside, PHAs can also be tuned to exhibit thermal, mechanical, and optical properties of commodity polymers including polyolefins, and they can be designed to be chemically recyclable towards a circular PHA economy or functionalized to acquire additional, diverse and/or improved properties. To enable for such modularity in the chemocatalytic PHAs, the development of stereoselective and controlled molecular catalysts as well as the design of monomer structures and polymerization processes, are of primary importance. In this context, this Perspective article focuses on the three recent advancements, including PHA stereomicrostructural engineering, melt-processability and chemical recyclability, and chemical functionalization.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"35 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01313a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradable plastics, especially those that can biodegrade in uncontrolled enviroments, are of importance to help curb the global plastics crisis. Poly(3-hydroxyalkanoate)s (PHAs), which can be either microbially or chemically synthesized, are one of the rare classes of plastics that can biodegrade under both managed and unmanaged conditions. Besides this exceptional upside, PHAs can also be tuned to exhibit thermal, mechanical, and optical properties of commodity polymers including polyolefins, and they can be designed to be chemically recyclable towards a circular PHA economy or functionalized to acquire additional, diverse and/or improved properties. To enable for such modularity in the chemocatalytic PHAs, the development of stereoselective and controlled molecular catalysts as well as the design of monomer structures and polymerization processes, are of primary importance. In this context, this Perspective article focuses on the three recent advancements, including PHA stereomicrostructural engineering, melt-processability and chemical recyclability, and chemical functionalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
Rational Design and Size Regulation of Unimolecular Nanoparticles for Constructing Diverse Superlattices in Soft Matter Ultrafast thermal responsive, shape memory and solvent-driven Fe3+-alginate/poly (N-isopropyl acrylamide) based hydrogel actuator Supramolecular bottlebrush copolymers from crown-ether functionalized poly(p-phenylenevinylene)s Polyacetals of higher cyclic formals: synthesis, properties and application as polymer electrolytes Polyurethane diacrylate incorporated pressure-sensitive adhesives with enhanced strain recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1