Antimonotungstate-Based Heterometallic Framework Formed by the Synergistic Strategy of In Situ-Generated Krebs-Type Building Units and the Substitution Reaction and Its High-Efficiency Biosensing KRAS Gene

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-12-31 DOI:10.1021/acs.inorgchem.4c04589
Peijun Gong, Yanying Wang, Junwei Zhao, Guo-Yu Yang
{"title":"Antimonotungstate-Based Heterometallic Framework Formed by the Synergistic Strategy of In Situ-Generated Krebs-Type Building Units and the Substitution Reaction and Its High-Efficiency Biosensing KRAS Gene","authors":"Peijun Gong, Yanying Wang, Junwei Zhao, Guo-Yu Yang","doi":"10.1021/acs.inorgchem.4c04589","DOIUrl":null,"url":null,"abstract":"A novel antimonotungstate (AT)-based heterometallic framework {[Er(H<sub>2</sub>O)<sub>6</sub>]<sub>2</sub>[Fe<sub>4</sub>(H<sub>2</sub>pdc)<sub>4</sub>(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]}·50H<sub>2</sub>O (<b>1</b>, H<sub>2</sub>pdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe<sup>III</sup>-substituted Krebs-type [Fe<sub>4</sub>(H<sub>2</sub>pdc)<sub>4</sub>(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> subunit and two [Er(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> cations. This subunit can be regarded as a product of carboxylic oxygen atoms of H<sub>2</sub>pdc ligands replacing active water ligands in the [Fe<sub>4</sub>(H<sub>2</sub>O)<sub>10</sub>(B-β-SbW<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>6–</sup> species. Apparently, the substitution action of carboxylic oxygen atoms of H<sub>2</sub>pdc ligands for active water ligands, together with the coordination function of Er<sup>3+</sup> ions, plays a connection role in the architecture of the three-dimensional (3-D) heterometallic framework. Based on the stability and high redox activity of <b>1</b>, a glassy carbon electrode modified by <b>1</b> is used for the construction of an electrochemical biosensor (ECBS). Thus, such <b>1</b>-based ECBS can sensitively detect the KRAS gene (a key genetic marker for identifying the occurrence of malignant tumors) and displays a low detection limit (0.106 pM), high selectivity, and reproducibility. This work not only provides a feasible approach to prepare novel multicomponent POM-based heterometallic frameworks but also establishes a new platform for biosensing the KRAS gene and extends the application scope of POM-based functional materials.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"23 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A novel antimonotungstate (AT)-based heterometallic framework {[Er(H2O)6]2[Fe4(H2pdc)4(B-β-SbW9O33)2]}·50H2O (1, H2pdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-FeIII-substituted Krebs-type [Fe4(H2pdc)4(B-β-SbW9O33)2]6– subunit and two [Er(H2O)6]3+ cations. This subunit can be regarded as a product of carboxylic oxygen atoms of H2pdc ligands replacing active water ligands in the [Fe4(H2O)10(B-β-SbW9O33)2]6– species. Apparently, the substitution action of carboxylic oxygen atoms of H2pdc ligands for active water ligands, together with the coordination function of Er3+ ions, plays a connection role in the architecture of the three-dimensional (3-D) heterometallic framework. Based on the stability and high redox activity of 1, a glassy carbon electrode modified by 1 is used for the construction of an electrochemical biosensor (ECBS). Thus, such 1-based ECBS can sensitively detect the KRAS gene (a key genetic marker for identifying the occurrence of malignant tumors) and displays a low detection limit (0.106 pM), high selectivity, and reproducibility. This work not only provides a feasible approach to prepare novel multicomponent POM-based heterometallic frameworks but also establishes a new platform for biosensing the KRAS gene and extends the application scope of POM-based functional materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Pb9Si8O22Cl6 and Pb3.07Ca1.93Si3O11: Two Ultraviolet Nonlinear Optical Materials Exhibit a Moderate Second Harmonic Generation Response Imidazole-Functionalized Zn-MOFs for One-Step C2H4 Purification from C2H2/C2H4/C2H6 Ternary Mixture Investigation of the Effect of Sb3+ Ion on the Spectroscopic Properties of Eu3+-Doped YVO4 Nanosized Materials Effect of Halogenation on the Optical, Electrical, and Thermal Properties of the Model Compound [Me3(i-Pr)N]2[SnBr6] Luminescence of the Cs2ZrCl6 under High Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1